Growth and Potential of Lomatia hirsuta Forests from Stump Shoots in the Valley of El Manso/Patagonia/Argentina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.2.1. Structures of the L. hirsuta Stands
2.2.2. Thinning Simulation
2.2.3. Growth of the Crop Trees
2.3. Processing and Data Analysis
2.3.1. Structures of the L. hirsuta Stands and Thinning Simulation
2.3.2. Growth of the Crop Trees
- Dominant type: Trees whose h/d ratios, in general, were below 80, already in early years, and remained below the limit value throughout their lives (5 trees).
- Variable type: Trees whose h/d ratios varied throughout their lives, generally reducing the h/d value with age, reaching less than 80; but the opposite could also have happened (5 trees).
- Suppressed type: Trees whose h/d ratios, in general, were always over 80 (8 trees).
3. Results
3.1. Structures of the L. hirsuta Stands
3.2. Thinning Simulation
3.3. Growth of the Crop Trees
4. Discussion
4.1. Credibility of Collected Data and What We Do and Don´t Know
4.2. Possibility of Growth for High-Quality Trees
4.3. Parquizado Management and Fire Risk Reduction
4.4. Recommendations for the Intermediate and Old Stands
- Salvage and improvement cutting: This includes the extraction of fallen and unstable trees or great damages to be obtained for their wood in favour of the better trees.
- Remove patchy clearances to create space for natural regeneration or plantings.
- Planting L. hirsuta in irregular holes in order to renew the stand and with the expectation of improving the vigour and quality of trees in the old phase. The question of whether the vitality and productive quality of the stand can be improved through the planting of seed trees is subject to research. L. hirsuta and seedlings of other native species that are later successional stage of this forests, like A. chilensis or N. dombeyi, could also be integrated. To succeed, it would be necessary to stop the grazing in the stands with plantings; further, the stumps of the cut trunks have to be killed to prevent new shoot growth. In this context, knowledge about the biological-technical maximum rotation period of L. hirsuta should be researched in further studies.
4.5. Recommendations for Young Stands
4.6. Additional Considerations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tortorelli, L. Maderas y Bosques Argentinos, 2nd ed.; Orientación Gráfica Editora: Buenos Aires, Argentina, 2009; pp. 329–332. [Google Scholar]
- Weinberger, P. Verbreitung und Wasserhaushalt araukano-patagonischer Proteaceen in Beziehung zu mikroklimatischen Faktoren. Flora 1974, 163, 251–264. [Google Scholar] [CrossRef]
- Eskuche, U. Estudios fitosociológicos en el norte de la Patagonia. I. Investigación de algunos factores de ambiente en comunidades de bosque y de chaparral. Phytocoenologia 1973, 1, 64–113. [Google Scholar] [CrossRef]
- Seibert, P. Die Vegetationskarte des Gebietes von El Bolsón, Prov. Río Negro, und ihre Anwendung in der Landnutzungsplanung. In Bonner Geographische Abhandlungen; Hahn, H., Kuls, W., Lauer, W., Höllermann, P., Boesler, K.A., Ruckert, H.-J., Eds.; Ferd. Dümmlers Verlag: Bonn, Germany, 1979; Volume 62, pp. 14–16. [Google Scholar]
- Kitzberger, T. Ecotones Between Forest and Grassland; Springer: New York, NY, USA, 2012; p. 63. [Google Scholar] [CrossRef]
- Lusk, C.H.; Corcuera, L.J. Effects of light availability and growth rate on leaf lifespan of four temperate rainforest Proteaceae. Rev. Chil. Hist. Nat. 2011, 84, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, J.A.; Lusk, C.H. Germination requirements and seedling shade tolerance are not correlated in a Chilean temperate rain forest. New Phytol. 2001, 152, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Reque, J.; Sarasola, M.; Gyenge, J.; Fernández, M.E. Caracterización silvícola de los ñirantales de la cuenca central del Río Foyel (Río Negro, Patagonia Argentina). Bosque 2006, 28, 33–45. [Google Scholar]
- Gyenge, J.; Fernández, M.E.; Sarasola, M.; de Urquiza, M.; Schlichter, T. Ecuaciones para la estimación de biomasa aérea y volumen de fuste de algunas especies leñosas nativas en el valle del río Foyel, NO de la Patagonia argentina. Bosque 2009, 30, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Gyenge, J.; Fernández, M.E.; Sarasola, M.; Schlichter, T. Testing a hypothesis of the relationship between productivity and water use efficiency in Patagonian forests with native and exotic species. For. Ecol. Manag. 2008, 255, 3281–3287. [Google Scholar] [CrossRef]
- Goldenberg, M.G.; Oddi, F.J.; Gowda, J.H.; Garibaldi, L.A. Shrubland Management in Northwestern Patagonia: An Evaluation of Its Short-Term Effects on Multiple Ecosystem Services. In Ecosystem Services in Patagonia: A Multi-Criteria Approach for an Integrated Assessment; Peri., P.L., Martínez-Pastur, G., Nahuelhual, L., Eds.; Springer Nature: Cham, Switzerland, 2021; Chapter 5; ISBN 978-3-030-69165-3. [Google Scholar]
- Porto Tapiquén, C.E. “South America” Layer (Shape File). Orogenesis Geographic Solutions. Porlamar, Venezuela 2015. Based on layers from Enviromental Systems Research Institute (ESRI). Free Distribution. Available online: http://tapiquen-sig.jimdo.com (accessed on 8 July 2021).
- Rogel, M. (Animal Breeder, El Manso, Río Negro, Argentina). Personal communication, 2020. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps—Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014; updated 2015; ISBN 978-92-5-108369-7. [Google Scholar]
- Buduba, C.; La Manna, L.; Irisarri, J. El suelo y el bosque en la Región Andino Patagónica. In Suelos y Vulcanismo: Argentina, 1st ed; Imbellone, P., Barbosa, O., Eds.; Asociación Argentina de la Ciencia del Suelo: Buenos Aires, Argentina, 2020; pp. 361–390. [Google Scholar] [CrossRef]
- Smalian, H.L. Beitrag zur Holzmeßkunst; C. Löffler Verlag: Stralsund, Germany, 1837. [Google Scholar]
- Huber, F.X. Hilfstafeln für Bedienstete des Forst- und Baufaches: Zunächst zur Leichten und Schnellen Berechnung des Massengehaltes Roher Holzstämme und der Theile Derselben, und Auch zu Anderm Gebrauche für Jedes Landesübliche Maaß Anwendbar; Fleischmann E.A.: München, Germany, 1828. [Google Scholar]
- Pretzsch, H. Grundlagen der Waldwachstumsforschung, 2nd ed.; Springer-Verlag: Berlin, Germany, 2019. [Google Scholar] [CrossRef]
- Pretzsch, H. Forest Dynamics, Growth and Yield. From Measurement to Model; Springer: Berlin, Germany, 2009. [Google Scholar] [CrossRef]
- Šēnhofa, S.; Katrevičs, J.; Adamovičs, A.; Bičkovskis, K.; Bāders, E.; Donis, J.; Jansons, A. Tree Damage by Ice Accumulation in Norway Spruce (Picea abies (L.) Karst.) Stands Regarding Stand Characteristics. Forests 2020, 11, 679. [Google Scholar] [CrossRef]
- Nicolescu, V.-N.; Carvalho, J.; Hochbichler, E.; Bruckman, V.; Piqué-Nicolau, M.; Hernea, C.; Viana, H.; Štochlová, P.; Ertekin, M.; Tijardovic, M.; et al. Silvicultural Guidelines for European Coppice Forests; Albert-Ludwigs-Universität Freiburg: Freiburg, Germany, 2017; pp. 4–5. [Google Scholar]
- Burschel, P.; Huss, J. Grundriss des Waldbaus. Ein Leitfaden für Studium und Praxis; Parey Buchverlag: Berlin, Germany, 1997; p. 487. [Google Scholar]
- Nyland, R.D. Silviculture: Concepts and Applications, 2nd ed.; Waveland Press, Inc.: Long Grove, USA, 2002; p. 682. ISBN 978-1-57766-527-4. [Google Scholar]
- Veblen, T.T.; Kitzberger, T.; Lara, A. Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian shrublands. J. Veg. Sci. 1992, 3, 507–520. [Google Scholar] [CrossRef]
- Corona, P.; Ascoli, D.; Barbati, A.; Bovio, G.; Colangelo, G.; Elia, M.; Garfi, V.; Iovino, F.; Lafortezza, R.; Leone, V.; et al. Integrated forest management to prevent wildfires under Mediterranean environments. Ann. Silvic. Res. 2015, 39, 1–22. [Google Scholar] [CrossRef]
Criterion | Categories | ||
---|---|---|---|
Social position | Dominant | Codominant | Suppressed |
Health condition | Fit | Injured | Dying |
Form of the trunk | Straight | Curved | Crooked |
Volume | Function | n | REE | r2adj |
---|---|---|---|---|
total [m3cc] | 0.0007737 (DBH (cm))2 | 18 | 0.07747 | 0.963 |
trunk [m3cc] | 0.0004338 (DBH (cm))2 | 18 | 0.0421 | 0.965 |
Variables | Young | Intermediate | Old | Parquizado |
---|---|---|---|---|
Number of trees/ha | 2244 a | 1167 ab | 600 b | 223 c |
Number of stems/ha | 6278 a | 2180 b | 1157 b | 300 c |
Number of stems/tree | 2.8 a | 1.9 b | 1.9 b | 1.3 b |
Quadratic mean diameter (QMD) [cm] | 10.7 c | 18.2 bc | 24.5 ab | 26.8 a |
Dominant QMD [cm] | 24.3 b | 34.9 ab | 43.7 a | 36 ab |
Height of the tree of QMD [m] | 9.5 b | 12.1 ab | 13.9 a | 14.5 a |
Mean dominant height [m] | 13.9 b | 16.4 ab | 18.2 a | 16.7 ab |
Basal area [m2/ha] | 56.1 a | 56.9 a | 54.4 a | 16.9 b |
Total volume [m3 o.b./ha] | 553 a | 560 a | 536 a | 167 b |
Volume of mature stems [m3 o.b./ha] * | 24 c | 173 ab | 249 a | 82 bc |
Variables | Young | Intermediate | Old | Parquizado | |||||
---|---|---|---|---|---|---|---|---|---|
Nha | % | Nha | % | Nha | % | Nha | % | ||
Health condition | Fit | 1622 | 25.8 | 663 | 30.4 | 150 | 11.5 | 157 | 52.2 |
Injured | 1844 | 29.4 | 883 | 40.5 | 627 | 50.0 | 133 | 44.5 | |
Dying | 2811 | 44.8 | 633 | 29.1 | 380 | 38.5 | 10 | 3.3 | |
Social position | Dominant | 367 | 5.8 | 183 | 8.4 | 147 | 9.1 | - | |
Codominant | 2022 | 32.2 | 1080 | 49.5 | 440 | 36.5 | - | ||
Suppressed | 3889 | 62.0 | 917 | 42.1 | 570 | 54.4 | - | ||
Form of the trunk | Straight | 1089 | 17.3 | 317 | 14.5 | 207 | 15.9 | 120 | 40.0 |
Curved | 1544 | 24.6 | 527 | 24.2 | 353 | 28.7 | 93 | 31.1 | |
Crooked | 3644 | 58.1 | 1337 | 61.3 | 597 | 55.4 | 87 | 28.9 | |
Volume [m3 o.b./ha] | crowns and thin stems * | 529 a | 386 b | 288 b | 85 c | ||||
badly formed stems | 18 c | 139 ab | 194 a | 78 bc | |||||
quality wood | 6 ab (169 **) | 35 ab | 55 a | 4 b |
Variables | Young | Intermediate | Old | ||||
---|---|---|---|---|---|---|---|
Extract | Remain | Extract | Remain | Extract | Remain | ||
1 | Number of stems/ha | 3078 a | 3200 a | 697 b | 1483 ab | 450 b | 707 b |
2 | Basal area [m2/ha] | 18.3 a | 37.8 a | 11.0 b | 45.9 a | 13.6 ab | 40.8 a |
3 | Total volumen [m3 o.b./ha] | 180 a | 373 a | 109 b | 452 a | 134 ab | 402 a |
4 | Volume of mature stems [m3 o.b./ha] (*) | 5 c | 18 b | 20 ab | 154 a | 48 a | 201 a |
5 | QMD [cm] | 8.7 b | 12.3 a | 14.2 b | 19.8 a | 19.6 b | 27.1 a |
6 | Height of QMD-trees [m] | 8.5 b | 9.7 a | 10.3 b | 13.1 a | 11.6 b | 16.7 a |
Range of Products | Young | Intermediate | Old |
---|---|---|---|
Firewood from the crowns and thin stems * | 140 a | 71 b | 69 b |
Badly formed stems | 4 b | 13 ab | 32 a |
Quality wood | - | 3 b | 11 (5 **) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kühn, H.; Loguercio, G.A.; Caselli, M.; Thren, M. Growth and Potential of Lomatia hirsuta Forests from Stump Shoots in the Valley of El Manso/Patagonia/Argentina. Forests 2021, 12, 923. https://doi.org/10.3390/f12070923
Kühn H, Loguercio GA, Caselli M, Thren M. Growth and Potential of Lomatia hirsuta Forests from Stump Shoots in the Valley of El Manso/Patagonia/Argentina. Forests. 2021; 12(7):923. https://doi.org/10.3390/f12070923
Chicago/Turabian StyleKühn, Hendrik, Gabriel A. Loguercio, Marina Caselli, and Martin Thren. 2021. "Growth and Potential of Lomatia hirsuta Forests from Stump Shoots in the Valley of El Manso/Patagonia/Argentina" Forests 12, no. 7: 923. https://doi.org/10.3390/f12070923
APA StyleKühn, H., Loguercio, G. A., Caselli, M., & Thren, M. (2021). Growth and Potential of Lomatia hirsuta Forests from Stump Shoots in the Valley of El Manso/Patagonia/Argentina. Forests, 12(7), 923. https://doi.org/10.3390/f12070923