Phase Transformation of Alumina, Silica and Iron Oxide during Carbothermic Reduction of Fly Ash for Ceramics Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Experimental Setup
2.3. Experimental Procedure
2.4. Analysis Methods
3. Thermodynamics Analysis
4. Results and Discussion
4.1. Effect of Temperature on Phase Transformation of Al2O3, SiO2, and Fe2O3
4.2. Surface Morphology and Phase Analysis
4.2.1. Residue
4.2.2. Condensate
4.3. Phase Transformation Analysis
4.4. Comparative Analysis of Carbothermic Reduction of Fly Ash in Air and Nitrogen
5. Conclusions
- (1)
- The phase transformation of Al2O3, SiO2 and Fe2O3 can be divided into four stages, i.e., 1373 K~1573 K, reduction of Fe2O3; 1673 K~1873 K, decomposition of mullite and reduction of silica; 1973 K~2173 K, formation and decomposition of Al5O6N; 2273 K, production of Al9FeSi3, Al, and Si.
- (2)
- During carbothermic reduction of fly ash in air, the reduction of Al2O3 is consistent with that in nitrogen, but that is not true for Fe2O3 and SiO2.
- (3)
- With increasing temperature, Fe3Si first appears, then Fe2Si follows. The presence of Fe promotes the reduction of SiO2. No FeSi was found. The generated Fe2Si participates in the production of Al9FeSi3. Growth of condensate of SiC, AlN, and C follows the VLS mechanism.
- (4)
- During carbothermic reduction of fly ash in air, much of the SiO2 is reduced into SiC or SiO. SiO reacts with oxygen preferentially, and Si3N4 was not produced. That is why β-Sialon cannot be prepared in air.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, B.Y.; Li, Y.; Yan, C.; Ding, Y.S. Effects of synthesis temperature and raw materials composition on preparation of β-Sialon based composites from fly ash. Trans. Nonferrous Met. Soc. China 2012, 22, 129–133. [Google Scholar] [CrossRef]
- Hossaonm, S.S.; Roy, P.K. Sustainable ceramics derived from solid wastes: A review. J. Asian Ceram.Soc. 2020, 9, 1–26. [Google Scholar]
- Shoppert, A.; Valeev, D.; Loginova, I.; Chaikin, L. Complete Extraction of Amorphous Aluminosilicate from Coal Fly Ash by Alkali Leaching under Atmospheric Pressure. Metals 2020, 10, 1684. [Google Scholar] [CrossRef]
- Valeev, D.; Kunilova, I.; Shoppert, A.; Salazar-Concha, C.; Kondratiev, A. High-pressure HCl leaching of coal ash to extract Al into a chloride solution with further use as a coagulant for water treatment. J. Clean. Prod. 2020, 276, 123206. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Li, M.; Liu, D.; Hou, X.L.; Zou, J.L.; Ma, X.T.; Shang, F.Y.; Wang, Z.W. Aluminum and iron leaching from power plant coal fly ash for preparation of polymeric aluminum ferric chloride. Environ. Technol. 2019, 40, 1568–1575. [Google Scholar] [CrossRef]
- Tang, M.C.; Zhou, C.C.; Pan, J.H.; Zhang, N.N.; Liu, C.; Cao, S.S.; Hu, T.T.; Ji, W.S. Study on extraction of rare earth elements from coal fly ash through alkali fusion—Acid leaching. Miner. Eng. 2019, 136, 36–42. [Google Scholar] [CrossRef]
- Zhang, W.C.; Noble, A.; Yang, X.B.; Honaker, R. A Comprehensive Review of Rare Earth Elements Recovery from Coal-Related Materials. Minerals 2020, 10, 451. [Google Scholar] [CrossRef]
- Halmann, M.; Frei, A.; Steinfeld, A. Carbothermal reduction of alumina: Thermochemical equilibrium calculations and experimental investigation. Energy 2007, 32, 2420–2427. [Google Scholar] [CrossRef]
- Feng, Y.B.; Yang, B.; Dai, Y.N. Research progress in carbothermal reduction of solid alumina. Chin. J. Nonferrous Met. 2013, 23, 866–872. (In Chinese) [Google Scholar]
- Dhage, S.; Lee, H.; Hassan, M.S.; Akhtara, M.S.; Kim, C.Y.; Sohn, J.M.; Kim, K.; Shin, H.S.; Yang, O.B. Formation of SiC nanowhiskers by carbothermic reduction of silica with activated carbon. Mater. Lett. 2009, 63, 174–176. [Google Scholar] [CrossRef]
- Fu, X.T.; Li, X.J.; Zhang, X.; Zhao, Y. Theoretical study of Al-Si alloy production by electrothermal method. Light Metals 2014, 3, 48–53. (In Chinese) [Google Scholar]
- Kemper, C.; Balomenos, E.; Panias, D.; Paspaliaris, I.; Friedrich, B. EAF carbothermic co-reduction of alumina and silica for the direct production of Al-Si master alloy. In Light Metals; Grandfield, J., Ed.; Springer: Cham, Switzerland, 2014; pp. 789–794. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, W.; Ge, Y.Y.; Chen, K.X.; Xie, Z.P. Preparation of Spherical AlN Granules Directly by Carbothermal Reduction–Nitridation Method. J. Am. Ceram Soc. 2015, 98, 392–397. [Google Scholar] [CrossRef]
- Forslund, B.; Zheng, J. Carbothermal synthesis of aluminum nitride at elevated nitrogen pressures. Part I. Effect of process parameters on conversion rate. J. Mater. Sci. 1993, 28, 3125–3131. [Google Scholar] [CrossRef]
- Hu, Y.C.; Li, S.M.; Shan, S.Y.; Jia, Q.M.; Jiang, L.H.; Wang, Y.M. Research Progress of Silicon Nitride Prepared by Carbothermal Reduction Method. B. Chin. Ceram. Soc. 2012, 31, 1165–1169. (In Chinese) [Google Scholar]
- Vlasova, M.V.; Bartnitskaya, T.S.; Sukhikh, L.L.; Krushinskaya, L.A.; Tomila, T.V.; Artyuch, S.Y. Mechanism of Si3N4 nucleation during carbothermal reduction of silica. J. Mater. Sci. 1995, 30, 5263–5271. [Google Scholar] [CrossRef]
- Bai, Z.L.; Qin, B.K.; Lian, M.L. Study on the Preparation of Si-Al Alloy by Carbon Reduction Coal Fly Ash. 7th International Conference on Energy and Environmental Protection. Adv. Eng. Res. 2018, 170, 1139–1142. [Google Scholar] [CrossRef]
- Yang, D.B.; Yao, H.Q.; MA, G.J.; Ao, W.Z.; Wan, G.X.; Zhang, D.S. Production of Si-Al alloy with carbothermal reduction of fly ash from thermal power plant. Renew. Resour. Circu. Eco. 2011, 4, 33–36. (In Chinese) [Google Scholar]
- Zhang, X.F. Test study of electric heat reducing high aluminum powder to extracted Fe-Al-Si. Ferro-Alloys 2005, 36, 11–15. (In Chinese) [Google Scholar]
- Jiang, H.X.; Sun, S.C.; Zhang, L.F. Experiment on production of Al-Si-Fe alloy with fly ash and bauxite by electrothermal method. Ferro-alloys 2003, 3, 23–27. (In Chinese) [Google Scholar]
- Zhu, J.; Yan, H. Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3. Int. J. Miner. Metall. Mater. 2017, 24, 309–315. [Google Scholar] [CrossRef]
- Yin, Y.; Ma, B.; Li, S.; Zhang, B.; Yu, J.; Zhang, Z.; Li, G. Synthesis of Al2O3-SiC composite powders from coal ash in NaCl-KCl molten salts medium. Ceram. Int. 2016, 42, 19225–19230. [Google Scholar] [CrossRef]
- Wang, W.; Chen, W.; Liu, H. Recycling of waste red mud for fabrication of SiC/mullite composite porous ceramics. Ceram. Int. 2019, 45, 9852–9857. [Google Scholar] [CrossRef]
- Gilbert, J.E.; Mosset, A. Preparation of β-SiAlON from Fly Ashes. Mater. Res. Bull 1998, 33, 117–123. [Google Scholar] [CrossRef]
- Qiu, Q.; Hlavacek, V. Carbonitridation of fly ash. II. Effect of decomposable additives and whisker formation. Ind. Eng. Chem. Res. 2005, 44, 2477–2483. [Google Scholar] [CrossRef]
- Fang, M.H.; Liu, H.T.; Huang, Z.H.; Huang, J.T.; Liu, Y.G.; Zhang, S.W. Phase transformation of high aluminium fly ash in carbothermal reduction–nitridation at high temperatures. Mater. High Tem. 2015, 32, 399–403. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, P.Y.; Yu, J.L.; Zhang, J. A mechanistic study on the synthesis of β-Sialon whiskers from coal fly Ash. Mater. Res. Bull. 2015, 65, 47–52. [Google Scholar] [CrossRef]
- Lu, X.Y.; Zhang, D.; Cai, S.Z. Study on synthesizing SiAlON powders from fly ashes. Refractories 2005, 39, 259–262. [Google Scholar]
- Luo, Y.; Zheng, S.L.; Ma, S.H.; Liu, C.L.; Ding, J.; Wang, X.H. Novel two-step process for synthesising β-SiC whiskers from coal fly ash and water glass. Ceram. Int. 2018, 44, 10585–10595. [Google Scholar] [CrossRef]
- Pesl, J.; Eric, R.H. High temperature carbothermic reduction of Fe2O3–TiO2–MxOy oxide mixtures. Min. Eng. 2002, 15, 971–984. [Google Scholar] [CrossRef]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns of mixtures. Ⅰ. Matrix-flushing method for quantitative multicomponent analysis. J. Appl. Cryst. 1974, 7, 519–525. [Google Scholar] [CrossRef]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns of mixtures. Ⅱ. Adiabatic principle of X-ray diffraction analysis of mixtures. J. Appl. Cryst. 1974, 7, 526–531. [Google Scholar] [CrossRef]
- Wood Charcoal and Test Method of Wood Charcoal. GB/T 17664-1999. Available online: https://max.book118.com/html/2017/0725/124182768.shtm (accessed on 12 July 2021).
- Tomeczek, J.; Palugniok, H. Kinetics of mineral matter transformation during coal combustion. Fuel 2002, 81, 1251–1258. [Google Scholar] [CrossRef]
- Qiu, Q.; Hlavacek, V.; Prochazka, S. Carbonitridation of Fly Ash. I. Synthesis of SiAlON-Based Materials. Ind. Eng. Chem. Res. 2005, 44, 2469–2476. [Google Scholar] [CrossRef]
- Pickles, C.A. Thermodynamic analysis of the selective carbothermic reduction of electric arc furnace dust. J. Hazard. Mater. 2008, 150, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://baike.mysteel.com/doc/view/46508.html (accessed on 12 July 2021).
- Ding, Y.L.; Warner, N.A. Catalytic reduction of carbon-chromite composite pellets by lime. Thermochim. Acta. 1997, 292, 85–94. [Google Scholar] [CrossRef]
- Chen, X.M. Theoretical Study on Chlorination Disproportionation of Alumina by Carbothermal Reduction in Vacuum. Ph.D. Thesis, Kunming University of Science and Technology, Kunming, China, 2012. (In Chinese). [Google Scholar]
- Zhao, Y.; Shen, Q.; Wang, C.B.; Zhang, L.M. Investigation of mechanical alloying process of Fe-Si. Powder Met. Tech. 2006, 24, 407–411. (In Chinese) [Google Scholar] [CrossRef]
- Tan, X.M.; Zhao, Z.; Chen, P.A.; Li, X.C.; Zhu, B.Q. Effect of nano metallic Fe on Al5O6N Synthesis in Al2O3-C refractories. Interceram Inter. Ceram. Rev. 2015, 64, 108–111. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Mukerji, J. Reaction sequences in the synthesis of silicon nitride from quartz. Ceram. Inter. 1991, 17, 171–179. [Google Scholar] [CrossRef]
- Wei, C.C.; Tian, G.S. Synthesis technology of spinel AlON. Trans. Nonfer Met. Soc. China 2007, 17, 152–155. (In Chinese) [Google Scholar]
- Liu, X.J.; Chen, F.; Zhang, F.; Zhang, H.L.; Zhang, Z.; Wang, J.; Wang, S.W.; Huang, Z.R. Hard transparent AlON ceramic for visible/IR windows. Int. J. Refract. Met. Hard Mater. 2013, 39, 38–43. [Google Scholar] [CrossRef]
- Song, Y.F.; Wang, S.H.; Deng, C.J.; Zhu, H.X. Effect of nitridizing holding time on properties of in-situ synthesized AlON bonded MgAl2O4-C refractories. Refractories 2017, 51, 181–185. (In Chinese) [Google Scholar]
- Chen, W.Y.; Wan, S.L.; Shi, G. Stable oxides on chars and impact of reactor materials at high temperatures. Energ. Fuel. 2007, 21, 778–792. [Google Scholar] [CrossRef]
- Dai, Y.N.; Yang, B. Vacuum Metallurgy of Nonferrous Materials; Metallurgical Industry Press: Beijing, China, 1999; pp. 220–235. [Google Scholar]
- Besisa, D.H.A.; Ewais, E.M.M.; Ahmed, Y.M.Z.; Elhosiny, F.I.; Kuznetsov, D.V.; Fend, T. Densification and characterization of SiC-AlN composites for solar energy applications. Renew. Energ. 2018, 129, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Dubois, J.; Murat, M.; Amroune, A.; Carbonneau, X.; Gardon, R.; Kannan, T.S. High-temperature carboreduction of kaolins of different crystallinity. Appl. Clay Sci. 1998, 13, 1–12. [Google Scholar] [CrossRef]
- Ren, K.G.; Chen, K.X.; Zhou, H.P.; Ning, X.S.; Jin, H.B.; Zhong, J.D. Synthesis of SiC nanowires in fluidized bed and its microstructure. Rare Metal Mater. Eng. 2009, 38, 52–54. (In Chinese) [Google Scholar]
- Bechtold, B.C.; Cutler, I.B. Reaction of Clay and Carbon to Form and Separate Al2O3 and SiC. J. Am. Ceram. Soc. 2006, 63, 271–275. [Google Scholar] [CrossRef]
- Chen, H.K.; Lin, C.I.; Lee, C. Mechanism of the reduction of carbon/alumina powder mixture in a flowing nitrogen stream. J. Mater. Sci. 1994, 29, 1352–1357. [Google Scholar] [CrossRef]
- Dai, Y.N. Binary Alloy Phase Diagrams; Science Press: Beijing, China, 2009; p. 219. (In Chinese) [Google Scholar]
- Available online: http://muchong.com/html/201602/9985885.html (accessed on 10 December 2019). (In Chinese).
- Qi, S.; Mao, X.J.; Li, X.K.; Feng, M.H.; Jiang, B.X.; Zhang, L. Synthesis of AlN hexagonal bipyramids by carbothermal reduction nitridation. Mater. Lett. 2016, 174, 167–170. [Google Scholar] [CrossRef]
- Dou, K.Z.; Jiang, Y.S.; Xue, B.; Wei, C.D.; Li, F.F. The carbon environment effects on phase composition and photoluminescence properties of β-SiAlON multiphase materials prepared from fly ash acid slag. Ceram. Inter. 2019, 45, 7850–7856. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Jin, Z. SiC powders prepared from fly ash. J. Mater. Process. Technol. 2001, 117, 52–55. [Google Scholar] [CrossRef]
- Yu, J.K.; Ueno, S.; Hiragushi, K.; Zhang, S.W. Synthesis of β-SiAlON Whiskers from Pyrophyllite. J. Ceram. Soc. Jpn. 1997, 105, 821–823. [Google Scholar] [CrossRef] [Green Version]
Composition | Al2O3 | SiO2 | Fe2O3 | CaO | TiO2 | MgO | MnO | C | Others |
---|---|---|---|---|---|---|---|---|---|
Content (wt%) | 30.46 | 45.60 | 3.00 | 2.32 | 0.92 | 0.50 | 0.03 | 4.18 | 12.99 |
Property Index | Mad | Aad | Vad | FCad |
---|---|---|---|---|
Index value wt%(air-dry basis) | 13.0 | 5.61 | 6.55 | 87.84 |
Category | Number | Reaction Equations | Fitting Formula of Standard Free Energy, kJ•mol−1 |
---|---|---|---|
Residue | (1) | SiO2 + 3C=SiC + 2CO(g) | ΔrG° = 593.5582 − 0.3293 T |
(2) | SiO2 + 2C=Si + 2CO(g) | ΔrG° = 683.6557 − 0.3523 T | |
(3) | 3SiO2 + 6C + 2N2(g)=Si3N4 + 6CO(g) | ΔrG° = 1177.8021 − 0.6410 T | |
(4) | Fe2O3 + 3C = 2Fe + 3CO(g) | ΔrG° = 464.3454 − 0.5063 T | |
(5) | SiO2 + 2C + 3Fe=Fe3Si + 2CO(g) | ΔrG° = 534.4661 − 0.3123 T (873.15 − 2073.15 K) ΔrG° = −626.5703 + 0.2558 T (2073.15 − 2473.15 K) | |
(6) | 2Al2O3 + 3C=Al4CO4 + 2CO(g) | ΔrG° = 794.3620 − 0.3665 T | |
(7) | Al2O3 + 3C + N2(g)= 2AlN + 3CO(g) | ΔrG° = 678.3700 − 0.3445 T | |
(8) | 2AlN + SiC + 1/2O2 = 2Al + Si + N2(g) + CO(g) | ΔrG° = 631.6170 − 0.3421 T | |
Condensate | (9) | SiO2 + C=SiO(g) + CO(g) | ΔrG° = 672.8021 − 0.3305 T |
(10) | SiO(g) + 2C = SiC + CO(g) | ΔrG° = −79.2431 + 0.0011 T | |
(11) | Al(g) + N2(g) = 2AlN | ΔrG° = −1273.7815 + 0.4568 T | |
(12) | Al2O3 + 2C = Al2O(g) + 2CO(g) | ΔrG° = 1263.5383 − 0.5370 T | |
(13) | Al2O(g) +C + N2 = 2AlN + CO(g) | ΔrG° = −585.1690 + 0.1924 T |
A | B | C | ||||||
---|---|---|---|---|---|---|---|---|
Element | Mass% | Atom% | Element | Mass% | Atom% | Element | Mass% | Atom% |
Al | 1.58 | 1.24 | Al | 36.96 | 41.09 | Al | 41.67 | 51.95 |
Si | 74.09 | 55.8 | Si | 36.71 | 39.21 | Si | 21.68 | 25.97 |
C | 24.33 | 42.90 | Ca | 26.33 | 19.70 | Fe | 36.65 | 22.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Deng, Y.; Feng, Y.; Li, Z. Phase Transformation of Alumina, Silica and Iron Oxide during Carbothermic Reduction of Fly Ash for Ceramics Production. Metals 2021, 11, 1165. https://doi.org/10.3390/met11081165
Yu Q, Deng Y, Feng Y, Li Z. Phase Transformation of Alumina, Silica and Iron Oxide during Carbothermic Reduction of Fly Ash for Ceramics Production. Metals. 2021; 11(8):1165. https://doi.org/10.3390/met11081165
Chicago/Turabian StyleYu, Qingchun, Yong Deng, Yuebin Feng, and Ziyong Li. 2021. "Phase Transformation of Alumina, Silica and Iron Oxide during Carbothermic Reduction of Fly Ash for Ceramics Production" Metals 11, no. 8: 1165. https://doi.org/10.3390/met11081165
APA StyleYu, Q., Deng, Y., Feng, Y., & Li, Z. (2021). Phase Transformation of Alumina, Silica and Iron Oxide during Carbothermic Reduction of Fly Ash for Ceramics Production. Metals, 11(8), 1165. https://doi.org/10.3390/met11081165