Microstructural Evolution of Large Cast Haynes 282 at Elevated Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Heat Treatment
2.2. Thermodynamic Calculation
2.3. Microstructural Characterisation
2.4. Hardness Test
3. Results and Discussion
3.1. Thermodynamic Calculations
- Elements which do not segregate in liquid (k~1): Ni, Cr, Co and C
- Positively segregated elements in liquid (k > 1): Nb, B, Mo and Ti
- Negatively segregated elements in liquid (k < 1): N and Al
3.2. Microstructural Analysis of the As-Cast Sample
3.3. Microstructural Evolution of MX in a Long-Term Aging Condition
3.3.1. Change of MX
- MX decomposition;
- Mo diffusing out from the MX to form other phases.
3.3.2. Stability of MX
3.4. Microstructural Evolution of Grain Boundary Precipitates in A Long-Term Aging Condition
3.5. Microstructural Evolution of Gamma Prime in a Long-Term Aging Condition
3.5.1. Coarsening of γ’ Particles
3.5.2. Bimodal Distribution of γ’ Particles
3.6. Relationship between Microstructure and Hardness
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, S.; Young, K.J.; Kyu, Y.M.; Ryul, R.D.; Yeom, C.S. Thermodynamic and Economic Investigation of Coal-Fired Power Plant Combined with Various Supercritical CO2 Brayton Power Cycle. Appl. Therm. Eng. Des. Process. Equip. Econ. 2018, 130, 611–623. [Google Scholar] [CrossRef]
- Pike, L.M. Development of a Fabricable Gamma-Prime (γ’) Strengthened Superalloy. In Superalloys 2008; Wiley: Hoboken, NJ, USA, 2008; pp. 191–200. [Google Scholar] [CrossRef]
- Dudziak, T.; Jura, K.; Polkowska, A.; Deodeshmukh, V.; Warmuzek, M.; Witkowska, M.; Ratuszek, W.; Chrusciel, K. Steam oxidation resistance of advanced steels and Ni-based alloys at 700 °C for 1000 h. Oxid. Met. 2018, 89, 755–779. [Google Scholar] [CrossRef] [Green Version]
- Boehlert, C.J.; Longanbach, S.C. A comparison of the microstructure and creep behavior of cold rolled HAYNES® 230 alloy™ and HAYNES® 282 alloy™. Mater. Sci. Eng. A 2011, 528, 4888–4898. [Google Scholar] [CrossRef]
- Osoba, L.O.; Khan, A.K.; Adeosun, S.O. Cracking susceptibility after post-weld heat treatment in Haynes 282 nickel based superalloy. Acta Met. Sin. (Engl. Lett.) 2013, 26, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-J.; Park, J.-H.; Ahn, Y.-S. Comparison of Creep Properties of Cast and Wrought Haynes 282 Superalloy. Adv. Mater. Sci. Eng. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Matysiak, H.; Zagorska, M.; Andersson, J.; Balkowiec, A.; Cygan, R.; Rasinski, M.; Pisarek, M.; Andrzejczuk, M.; Kubiak, K.; Kurzydlowski, K.J. Microstructure of Haynes® 282® Superalloy after Vacuum Induction Melting and Investment Casting of Thin-Walled Components. Materials 2013, 6, 5016–5037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maziasz, P.J.; Evans, N.D.; Jablonski, P.D. High-Temperature Mechanical Properties and Microstructure of Cast Ni-based Superalloys for Steam Turbine Casing Applications. In Proceedings of the Advances in Materials Technology for Fossil Power Plants: Proceedings from the 6th International Conference, Santa Fe, NM, USA, 31 August–3 September 2010; pp. 900–916. [Google Scholar]
- Unocic, K.; Kirka, M.; Cakmak, E.; Greeley, D.; Okello, A.; Dryepondt, S. Evaluation of additive electron beam melting of haynes 282 alloy. Mater. Sci. Eng. A 2020, 772, 138607. [Google Scholar] [CrossRef]
- Deshpande, A.; Nath, S.D.; Atre, S.; Hsu, K. Effect of Post Processing Heat Treatment Routes on Microstructure and Mechanical Property Evolution of Haynes 282 Ni-Based Superalloy Fabricated with Selective Laser Melting (SLM). Metals 2020, 10, 629. [Google Scholar] [CrossRef]
- Ramakrishnan, A.; Dinda, G. Microstructure and mechanical properties of direct laser metal deposited Haynes 282 superalloy. Mater. Sci. Eng. A 2019, 748, 347–356. [Google Scholar] [CrossRef]
- Osoba, L.O.; Ojo, O.A. Influence of laser welding heat input on HAZ cracking in newly developed Haynes 282 superalloy. Mater. Sci. Technol. 2012, 28, 431–436. [Google Scholar] [CrossRef]
- Polkowska, A.; Polkowski, W.; Warmuzek, M.; Cieśla, N.; Włoch, G.; Zasada, D.; Purgert, R.M. Microstructure and Hardness Evolution in Haynes 282 Nickel-Based Superalloy During Multi-variant Aging Heat Treatment. J. Mater. Eng. Perform. 2019, 28, 3844–3851. [Google Scholar] [CrossRef] [Green Version]
- Osoba, L.O.; Khan, A.K.; Ojo, O.A. Identification of Mo-based precipitates in Haynes 282 superalloy. Miner. Met. Mater. Soc. ASM Int. 2017. [CrossRef]
- Yang, Y.; Thomson, R.C.; Leese, R.M.; Roberts, S. Microstructural evolution in cast Haynes 282 for application in advanced power plants. In Advances in Materials Technology for Fossil Power Plants, Proceedings of the 7th International Conference (EPRI 2013); Gandy, D., Shingledecker, J., Eds.; ASM International: Materials Park, OH, USA, 2013; pp. 143–154. [Google Scholar]
- Joseph, C.; Persson, C.; Colliander, M.H. Precipitation Kinetics and Morphology of Grain Boundary Carbides in Ni-Base Superalloy Haynes 282. Met. Mater. Trans. A 2020, 51, 6136–6141. [Google Scholar] [CrossRef]
- Davies, R.H.; Dinsdale, A.T.; Gisby, J.A.; Robinson, J.A.J.; Martin, S.M. MTDATA—Thermodynamic and Phase Equilibrium Software from the National Physical Laboratory; NPL Materials Centre; National Physical Laboratory: Teddington, UK, 2002. [Google Scholar]
- Saunders, N. Phase Diagram Calculations for Ni-based Superalloys. In Superalloys 1996; TMS: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Osoba, L.O.; Ding, R.G.; Ojo, O.A. Improved Resistance to Laser Weld Heat-Affected Zone Microfissuring in a Newly Developed Superalloy HAYNES 282. Met. Mater. Trans. A 2012, 43, 4281–4295. [Google Scholar] [CrossRef]
- Vattappara, K.; Hosseini, V.A.; Joseph, C.; Hanning, F.; Andersson, J. Physical and thermodynamic simulations of gamma-prime precipitation in Haynes® 282® using arc heat treatment. J. Alloy. Compd. 2021, 870, 159484. [Google Scholar] [CrossRef]
- Coble, R.L. A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials. J. Appl. Phys. 1963, 34, 1679–1682. [Google Scholar] [CrossRef]
- Pike, L.M. Long term thermal exposure of Haynes 282 alloy. In Proceeding of the 7th International Conference on Superalloy 718 and Derivatives, Pittsburgh, PA, USA, 10–13 October 2010; pp. 645–660. [Google Scholar] [CrossRef]
- Alexandratou, A.; Deligiannis, S.; Liolios, D.; Tsakiridis, P. TEM Study of Precipitation Sequences in Haynes 282 Ni Superalloy. Microsc. Microanal. 2018, 24, 2200–2201. [Google Scholar] [CrossRef] [Green Version]
- Baldan, A. Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories. J. Mater. Sci. 2002, 37, 2171–2202. [Google Scholar] [CrossRef]
- Hawk, J.A.; Cheng, T.-L.; Sears, J.S.; Jablonski, P.D.; Wen, Y.-H. Gamma Prime Stability in Haynes 282: Theoretical and Experimental Considerations. J. Mater. Eng. Perform. 2015, 24, 4171–4181. [Google Scholar] [CrossRef]
- Jackson, M.; Reed, R. Heat treatment of UDIMET 720Li: The effect of microstructure on properties. Mater. Sci. Eng. A 1999, 259, 85–97. [Google Scholar] [CrossRef]
- Shin, K.-Y.; Kim, J.-H.; Terner, M.; Kong, B.-O.; Hong, H.-U. Effects of heat treatment on the microstructure evolution and the high-temperature tensile properties of Haynes 282 superalloy. Mater. Sci. Eng. A 2019, 751, 311–322. [Google Scholar] [CrossRef]
- Tortorelli, P.F.; Unocic, K.A.; Wang, H.; Santella, M.L.; Shingledecker, J.P. Ni-Based Alloys for Advanced Ultra-Supercritical Steam Boilers, Fossile Energy Crosscutting Research Program Review. 2014. Available online: https://www.netl.doe.gov/File%20Library/Events/2014/crosscutting/Crosscutting_20140522_1600B_ORNL.pdf (accessed on 23 June 2021).
C | Cr | Mo | Si | Ti | Co | B | Al | Ni |
---|---|---|---|---|---|---|---|---|
0.06 | 20 | 8.5 | 0.15 | 2.1 | 10 | 0.005 | 1.5 | Bal. |
Samples | Heat Treatment Condition | ||||
---|---|---|---|---|---|
As-Cast | Solution Treated | First Aged | Second Aged | Isothermal Aging | |
1100 °C/12 h + 1150 °C/6 h/WQ | 1010°C/5 h/WQ | 788 °C/8 h/ AC | 788 °C/AC | ||
AC | √ | ||||
ST | √ | √ | |||
FA | √ | √ | √ | ||
SA | √ | √ | √ | √ | |
IA15 | √ | √ | √ | √ | 15 hrs |
IA100 | √ | √ | √ | √ | 100 hrs |
IA1000 | √ | √ | √ | √ | 1000 hrs |
IA3000 | √ | √ | √ | √ | 3000 hrs |
IA5000 | √ | √ | √ | √ | 5000 hrs |
IA7000 | √ | √ | √ | √ | 7000 hrs |
IA10000 | √ | √ | √ | √ | 10,000 hrs |
Aging Time (Hour) | 15 | 1000 | 5000 | 10,000 |
---|---|---|---|---|
Size of M23C6 (µm) | 0.51 ± 0.05 | 0.60 ± 0.09 | 0.56 ± 0.28 | 0.55 ± 0.33 |
Size of M6C (µm) | 0.64 ± 0.26 | 0.87 ± 0.48 | 1.25 ± 0.28 | 1.35 ± 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y. Microstructural Evolution of Large Cast Haynes 282 at Elevated Temperature. Crystals 2021, 11, 867. https://doi.org/10.3390/cryst11080867
Yang Y. Microstructural Evolution of Large Cast Haynes 282 at Elevated Temperature. Crystals. 2021; 11(8):867. https://doi.org/10.3390/cryst11080867
Chicago/Turabian StyleYang, Yujin. 2021. "Microstructural Evolution of Large Cast Haynes 282 at Elevated Temperature" Crystals 11, no. 8: 867. https://doi.org/10.3390/cryst11080867
APA StyleYang, Y. (2021). Microstructural Evolution of Large Cast Haynes 282 at Elevated Temperature. Crystals, 11(8), 867. https://doi.org/10.3390/cryst11080867