The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function
Abstract
:1. Introduction
2. Dietary Sources of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA)
3. Fatty Acid Composition of Adipose Tissue
Reference | Study Design | Subjects | Dose | Length | SCAT Biopsy Site | Abundance in AT EPA and DHA |
---|---|---|---|---|---|---|
[33] | Randomized double-blind, placebo controlled, parallel groups | Control: n = 25 (12 M/13 F) Age 55.4 y; BMI 29.5 kg/m2 | Control: 2 g olive oil | 6 wk | Gluteal | Control (baseline vs. 6 wk): EPA—0.11% to 0.11%; DHA—0.29% to 0.29% |
n-3 PUFA: n = 25 (12M/13F) Age 58.0 y, BMI 30.8 kg/m2 | n-3 PUFA: 2 g fish oil/d (640 mg EPA and 480 mg DHA) | n-3 PUFA: EPA—0.12% to 0.13%; DHA—0.27% to 0.30% | ||||
[34] | Randomized double-blind, placebo controlled | Control: Pre-menopausal: n = 22 Age 44 y, BMI 24.6 kg/m2; Post-menopausal: n = 23 Age 55.6 y, BMI 23.1 kg/m2 | Control: 4 g thistle oil | 12 wk | Gluteal | Control (baseline vs. 12 wk): Pre-menopausal: EPA 0.1% to 0.1%; DHA 0.2% to 0.3%; Post-menopausal: EPA 0.1% to 0.1%; DHA 0.3% to 0.3% |
Fish oil: Pre-menopausal: n = 23 Age 41.6 y, BMI 24.5 kg/m2; Post-menopausal: n = 22, Age 56.0 y; BMI 24.5 kg/m2 | Fish oil: 4 g fish oil (38.5% EPA and 25.9% DHA) | Fish oil: Pre-menopausal: EPA 0.1% to 0.1%; DHA 0.2% to 0.2%; Post-menopausal: EPA 0.1% to 0.2%; DHA 0.3% to 0.4% | ||||
[31] | Observational | Eight control | Control: low fish/no fish oil supplementation | 12 m | Not reported | Control Group: EPA 0.003% (total FA); DHA 0.1% |
Seven patients attending lipid disorder clinic | Patients (fish oil): 10–15 g MaxEPA (17% EPA, 10.6% DHA) | Fish oil Group: EPA 0.4%; DHA 0.7% | ||||
[32] | Randomised placebo controlled parallel | Control: n = 14 (6M/8F) Age ‡ 62 y, BMI ‡ 29.2 kg/m2 all had T2D | Control: 20 g/d corn oil | 9 wk | Gluteal | Control (0 vs. 9 wk); EPA 0.16% to 0.15%; DHA 0.39% to 0.39% |
Fish oil: n = 12 (7M/5F) Age ‡ 57 y, BMI ‡ 30.1 kg/m2 all had T2D | Fish oil: 20 g/d fish oil (13% EPA, 21% DHA) | Fish oil (0 vs. 9 wk); EPA 0.18% to 0.23%; DHA 0.49% to 0.55% * | ||||
[30] | Parallel study 4 groups (0, 3, 6 or 9 g fish oil/d) | 58 months; Age 56.2 y | 0 g/d = olive + palm oil; 3 g/d = 0.81 g EPA, 0.16 g DHA; 6 g/d = 1.62 g EPA, 0.33 g DHA; 9 g/d = 2.43 g EPA, 0.49 g DHA | 12 m | AbdominalGluteal | Average change/g FA/d; EPA: Abdo = ↑0.12 wt %; Gluteal = ↑0.11 wt % |
DHA: Abdo = ↑0.24 wt %; Gluteal = ↑0.14 wt % | ||||||
[29] | Parallel study 5 groups (received capsules to be equal to one portion of oily fish for 0, 1, 2 or 4 d/wk) | M and F 20–80 y; BMI >18 or <35 kg/m2 | 0 = high oleic sunflower oil; 1 = 1.5 g EPA, 1.77 g DHA/wk; 2 = 3.0 g EPA, 3.54 g DHA /wk; 4 = 6.0 g EPA, 7.08 g DHA/wk | 12 m | Abdominal | Average change (% total FAs) compared to 0 portions; EPA: 0 portions = 0.18 % total; 1 portion = ↑0.05 % total; 2 portions = ↑0.04 % total; 4 portions = ↑0.11 % total ** |
DHA: 0 portions = 0.22 % total; 1 portion = ↑0.05 % total; 2 portions = ↑0.06 % total; 4 portions = ↑0.13 % total ** |
4. The “Anti-Obesity” Effect of EPA and DHA
4.1. Suppression of Fat Deposition and Adipogenesis
Reference | Study Design | Subjects | Dose | Length | Measured | Adipose Tissue Outcome |
---|---|---|---|---|---|---|
[42] | Parallel (LIPGENE study) 4 Groups | Group 1. high SFA (n = 8, Age 57.8 y; BMI 36 kg/m2) | Group 1. No n-3 | 12 wk | SCAT abdo; mRNA expression of genes related to fatty acid uptake and storage | n-3 Supplementation group only had a significant decreased expression of PLIN1 and FABP4 |
Group 2. high MUFA (n = 9, Age 57.1 y; BMI 34.5 kg/m2) | Group 2. No n-3 | |||||
Group 3.LFHCC (plus 4 × 1 g/d sunflower oil) (n = 12, Age 56.5 y; BMI 35.7 kg/m2) | Group 3. supplement 4 × 1 g sunflower oil | |||||
Group 4. LFHCC plus 4 × 1 g/d FO (n = 10, Age 54.8 y; BMI 35.0 kg/m2) | Group 4. supplement 4 × 1 g FO (1.24 g n-3 fatty acids in ratio 1.4 EPA:1 DHA) | |||||
[45] | Parallel (LIPGENE study) 4 Groups | See Reference [42] (Table 2) for participant characteristics and dietary groups | Group 1. No n-3 | 12 wk | SCAT abdo mRNA and protein expression of genes related to insulin signaling and carbohydrate metabolism | n-3 Supplementation for 12 wk increased expression of IRS-1 protein and CAP and decreased the expression of JNK, pAKT, EHD2, GAPDH, PEPCK1 and Anxa2. There was no change in PDK1 |
Group 2. no n-3 | ||||||
Group 3. supplement 4 × 1 g sunflower oil | ||||||
Group 4. supplement 4 × 1 g FO (1.24 g n-3 fatty acids in ratio 1.4 EPA:1 DHA) | ||||||
[47] | Parallel (LIPGENE study) 4 Groups | See Reference [42] (Table 2) for participant characteristics and dietary groups | Group 1. No n-3 | 12 wk | SCAT abdo mRNA expression of genes related to antioxidant processes; Postprandial = 4 h after high fat meal consumption | Postprandial increase in AT NADPH oxidase subunit p40phox after 12 wk consumption n-3 fatty acids; Compared to SFA diet postprandial expression of SOD2, GPX4, TXN and KEAP1 were significantly lower whilst GPX3 and TXNRD1 were significantly higher |
Group 2. no n-3 | ||||||
Group 3. supplement 4 × 1 g sunflower oil | ||||||
Group 4. supplement 4 × 1 g FO (1.24 g n-3 fatty acids in ratio 1.4 EPA:1 DHA) | ||||||
[46] | Parallel | Control (n = 13 (5M/8F) 37.8 y; BMI 30.1 kg/m2) | Control: n-3 fatty acids %TE intake = 0 | 14 wk (2 wk isocaloric, 12 wk ad libitum) | SCAT abdo; mRNa expression of gene related to inflammation | No change in the mRNA expression of genes encoding mediators of inflammation after consumption of n-3 fatty acids or when compared to control group. |
n-3 PUFA (n = 11 (3M/8M) 40.5 y; BMI 30.4 kg/m2) | n-3 PUFA: EPA—0.68% TE and DHA—0.47% TE | |||||
[44] | Parallel | Control (n = 28 (15M/23F) 38 y; BMI 44.6 kg/m2 | Control: butter fat (5g/d) on control diet | 8 wk | VAT and SCAT abdo biopsies taken at end of intervention only. Expression of inflammatory related genes. Production of anti-inflammatory n-3 PUFA-derived eicosanoids. | Compared to control significant decreases in SCAT abdo on n-3 PUFA group for CCL2, CCL3, IL6, HIF-1A, TGFB1, CD40 and an increase in ADIPOQ |
n-3 PUFA (n = 27 (14M/23F) 39 y; BMI 48.7 kg/m2 | n-3 PUFA: 4 g/d n-3 as ethyl esters (46% EPA and 38% DHA) | No differences in inflammatory genes in VAT. DHA-derived lipid mediators were more increased in VAT than in SAT. | ||||
[43] | Parallel (2 doses) | Group A: n = 6 (4 M) age 50.5 ± 10.8 y; BMI < 27 kg/m2 with CKD | Group A: 6 MaxEPA capsule/d (180 mg and 120 mg DHA per capsule) | 10 wk | SCAT Abdo mRNA expression of genes related to inflammation | Group A: decreased mRNA expression of MMP9 and CD68 (baseline vs. 10 wk) |
Group B: n = 6 (2 M) age 50.2 ± 6.7 y; BMI < 27 kg/m2 with CKD | Group B: 12 MaxEPA capsule/d (180 mg and 120 mg DHA/capsule) | Group B: non-significant increase in MMP9 and CD68 (baseline vs. 10 wk) | ||||
[48] | Parallel | Placebo: n = 14 (5M) 53.3 ± 2.2 y; BMI 33.4 (27–43) kg/m2 with IR | Placebo: 4 g/d corn oil | 12 wk | SCAT Abdo FAC, macrophages, capillaries, expression of inflammatory genes | Baseline vs. 12 weeks: Abundance of EPA and DHA in SCAT Abdo increased in FO group only |
Fish oil: n = 19 (6 M), 48.8 ± 2.3 (sem) y; BMI 33.4 (27–43) kg/m2 with IR | Fish oil (FO): 4 g/d EPA and DHA (Lovaza/Omacor) | Significant decrease in macrophages and crown like structures in tissue of FO group only; Significant decrease in mRNA expression of tissue MCP-1 and CD68 in FO group only |
Reference | Study Design/Diet | Model | Dose | Duration | Measured | Adipose Tissue Outcome |
---|---|---|---|---|---|---|
[41] | Weight gain HF diet | C57BL/6 J mice | EPA and DHA combined increasing from 1% to 12% (wt/wt) dietary lipids | 7–8 wk | Adiposity | AT accumulation limited when the amount of EPA/DHA increased on high fat diet. Epididymal fat decreased by 30%–50% of tissue cellularity. |
[51] | HF diet with different combination of fatty acids added: 4 groups | 4 m C57BL/6 J male mice | Group 1: HF-F high fat with 20% (wt/wt) flaxseed oil | 4–5 wk | Adiposity | The EPA/DHA group (HF-F2) decreased body weight and had lowest increase in epididymal fat. |
Group 2: HF-F2: 44% dietary lipids—6% EPA and 51% DHA (EPAX1050) | ||||||
Group 3: cHF-HF low n-3 PUFA content | Epididymal mRNA expression of genes related to OXPHOS and fatty acid uptake increased and those related to lipogenesis decreased. | |||||
Group 4: HF-F1 high fat 15% EPAX1050 | ||||||
[50] | HF diets comparing MaxEPA oil, herring oil, olive oil + beef tallow | 50 d Wistar rats | MaxEPA—n-3 fatty acids ~41% diet; Herring oil—n-3 fatty acids-3 ~19% diet; Olive oil + beef tallow: n-3 fatty acids ~1% diet | 4 wk | Adiposity | MaxEPA group has significantly lower lipid mass and fat cell size (but no change in number) in retroperitoneal fat compared to the low n-3 (olive oil + beef tallow) and herring oil diets. |
MaxEPA group had significantly lower epididymal fat mass and fat cell number compared to olive oil + beef tallow group. | ||||||
[52] | HF (50% TE) diets. Three groups: | 6 wk male Wistar rats | Not described | 16–20 d | Adiposity | High lard and high lard plus corn oil significantly increased retroperitoneal fat whilst high lard plus FO had significant decrease in weight of inguinal, retroperitoneal and epididymal AT. |
Group 1. high lard | ||||||
Group 2: high lard plus FO | No change in any group in FAS activity or expression in inguinal and retroperitoneal fat depots. | |||||
Group 3: high lard plus corn oil | ||||||
[49] | HF feeding with corn oil or FO | Male Fisher 344 rats | 40% diet FO or 40% diet corn oil | 6 wk | Adiposity | FO group had significantly lower epididymal fat pads than the corn oil group. |
[53] | HF feeding with or without FO | Male C57Bl/6 (WT) or GPR120 knockout mice—15 wk | With or without 27% menhaden FO (wt/wt menhanden FO 16% EPA and 9% DHA) | 5 wk | AT inflammation | Wild-type animals: FO group had decreased mRNA expression of genes related to inflammation and macrophage infiltration in AT. |
FO supplementation had no effect in GPR120 knockout. | ||||||
[55] | HF diets (39% energy) comparison of olive oil and FO. | LDL receptor deficient (LDLR−/−) mice on C57BL/6 J background. Females 2–3 m old. | Olive oil group: 6% energy olive | 12 wk | Adiposity and inflammation | Compared to olive oil group the FO group had: - significantly higher total and perigonadal fat mass than olive oil group. - significantly higher distribution of larger adipocytes. - significantly increased AT cholesterol content and decreased gene expression in WAT related to inflammation and insulin sensitivity compared to olive oil group. |
FO group: 6% energy menhaden oil (140 mg EPA and 95 mg DHA/g oil) | ||||||
[54] | Control (FO 6% fat dry wt) and cafeteria (HF 62% fat dry wt) and | Male Wistar rats | Control and cafeteria groups: EPA 1 g/1kg/per day | 5 wk | Adiposity, apoptosis and inflammation | Cafeteria + EPA group had lower fat mass gain, reduced retroperitoneal fat mass, decreased food intake and increased leptin production compared to cafeteria only fed rats. Control + EPA group had marked increase in markers of adipocyte apoptosis compared to control only. No different in cafeteria fed groups. |
TNFα expression significantly decreased in cafeteria + EPA compared to cafeteria only. | ||||||
[40] | High and low dietary levels of EPA and DHA | Atlantic salmon | Control (rapeseed oil 10% of total fatty acids), FO (20% of total fatty acids), DHA enriched oil diet (42% DHA and 9% EPA), EPA enriched oil diet (43% EPA and 12% DHA) | 21 wk | Lipid accumulation, β-oxidation, apoptosis | FO in decrease fat percentage of WAT and increase the FA β-oxidation capacity. |
High levels of DHA and EPA in DHA and E PA enriched oil diets lead to, loss of mitochondrial functions, and induction of caspase-3, indicating an onset of apoptosis. |
Reference | Cell Type | Cell Stage | Control Cells * | EPA/DHA Dose | Culture Duration | Measured | Outcome |
---|---|---|---|---|---|---|---|
[59] | 3T3-L1 | Pre-confluent pre-adipocytes; Post confluent pre-adipocytes; Early and fully differentiated adipocytes | BSA | DHA: 25, 50, and 200 μM | 4, 24, 48 h, and 6 d | DNA denaturation; lipid accumulation; GPDH and LDH activity; glycerol secretion in media | DHA had anti-adipogenic effect with decreased mean lipid droplet size and % of lipid area but increased basal lipolysis and apoptosis |
[69] | 3T3-L1 | Different stages of differentiation | NI | EPA, DHA: 100 µM | 24–48 h | Lipid accumulation; UPS activity; MTT cytotoxicity assay; expression of NFκB, TNFα, adiponectin, SREBP1, FAS, PPARγ | EPA and DHA reduced expression of adipogenic genes, decreased activity of UPS, increased accumulation of neutral fats and induced TNFα mRNA level |
[67] | 3T3-L1 | Fully differentiated adipocytes | BSA | EPA, DHA: 100 µM | 48 h | Expression of PPARγ, ACC1, SCD1, adiponectin | DHA did not affect expression of any measured genes. |
EPA only increased mRNA expression of SCD1 | |||||||
[61] | 3T3-L1 | Fully differentiated | DMSO and/or Ethanol | EPA: 100, 200 µM | 24 h | Apelin secretion and gene expression | EPA stimulated apelin secretion and apelin gene expression |
[57] | 3T3-L1 | Fully differentiated | TZD | EPA, DHA: 100 µM | 48 h | Adiponectin secretion | EPA and DHA increased adiponectin secretion |
[56] | 3T3-L1 | Fully differentiated | 2% BSA + 100% ethanol | EPA, DHA: 100 µM | 7 d | Lipid accumulation, glycerol realise in media and mRNA expression of adipogenic, lipolytic and LD markers | EPA and DHA reduced lipid droplet formation and SCD1 expression compared to cells treated with stearic acid.DHA increased lipolysis, ATGL gene and protein expression and reduced gene expression of perlipin, caveolin-1, Cidea |
[60] | 3T3-L1 | Differentiated adipocytes | BSA | EPA, DHA: 100 µM | 24 h | mRNA and protein levels of anti-oxidative enzyme HO-1, gene expression of SOD, CAT and GPX | EPA and DHA prevented oxidative stress induced HO-1 and activation of Nrf-2 |
[58] | 3T3-L1 | Differentiated adipocytes | NI | EPA: 100 µM | 24 h | CPT-1—Activity, protein level and mRNA expression | EPA increased β-oxidation but did not inhibit lipogenesis |
[62] | 3T3-L1 | Fully differentiated | Differentiation media no FA added | EPA, DHA: 50 µM | 7 d | mRNA expression of PPARγ, C/EBPα, aP2; oil red O staining; adiponectin secretion; pro-inflammatory signalling pathways | DHA but not EPA significantly increased differentiation markers. DHA more effective than EPA at increasing adiponectin secretion. DHA only inhibited activation of ERK 1/2 and P38 MAPK |
[65] | 3T3-L1 | Different stages of differentiation | Albumin | EPA: 100 μM; DHA: 50 μM | 48 h | Lipid accumulation and glycerol release. Secretion of IL-6, leptin, adiponectin | EPA and DHA did not affect lipid accumulation or lipolysis. EPA and DHA increased secretion of adiponectin in early differentiated adipocytes. EPA and DHA had an opposite effect on IL-6 secretion: EPA increased secretion at all stages, DHA decreased it. EPA only had an impact on leptin secretion in early stage of differentiation |
[64] | 3T3-L1 | Fully differentiated | Albumin | EPA, DHA: 125 μM | 24 h | Adiponectin secretion and adiponectin cellular protein | EPA and DHA increased the secreted adiponectin concentration but did not affect cellular adiponectin protein content |
[68] | Human breast adipocytes | Fully differentiated | NI | DHA: 50, 100 µM | 24 h | mRNA expression of IL-6, TNFα, PPARγ, PPARα, HSL, perlipin, LPL, FAS, glycerol release | DHA decreased the expression of PPARγ and other lipogenic genes and increased the expression of lipolytic genes and glycerol release |
[63] | Human primary adipocytes | Fully differentiated | Differentiation media or BSA | EPA, DHA: 5 and 10 μM | 6 and 12 h | IL-6,TNFα, MCP1 secretion before and after LPS treatment | EPA and DHA reduced the secretion of LPS induced cytokine secretion |
[66] | Human primary adipocytes | Fully differentiated | BSA | EPA, DHA: 100 µM | 48 h | Adiponectin secretion and adiponectin cellular protein | EPA and DHA increased adiponectin secretion. EPA but not DHA increased cellular adiponectin protein |
4.2. Adipocyte Apoptosis
4.3. Increased Fatty acid Oxidation (Energy Expenditure)
5. The “Anti-Inflammatory” Effects of EPA and DHA on Adipose Tissue
Suppression of Pro-Inflammatory Cytokine Production
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mohamed-Ali, V.; Pinkney, J.H.; Coppack, S.W. Adipose tissue as an endocrine and paracrine organ. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Trayhurn, P. Adipocyte biology. Obes. Rev. 2007, 8, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Frayn, K.N. Adipose tissue as a buffer for daily lipid flux. Diabetologia 2002, 45, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.F.; Carpentier, A.; Adeli, K.; Giacca, A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr. Rev. 2002, 23, 201–229. [Google Scholar] [CrossRef] [PubMed]
- Unger, R.H.; Orci, L. Lipotoxic diseases of nonadipose tissues in obesity. Int. J. Obes. Relat. Metab. Disord. 2000, 24, S28–S32. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Kusminski, C.M.; Scherer, P.E. Adipose tissue remodeling and obesity. J. Clin. Investig. 2011, 121, 2094–2101. [Google Scholar] [CrossRef] [PubMed]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef] [PubMed]
- Wellen, K.E.; Hotamisligil, G.S. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Investig. 2003, 112, 1785–1788. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821–1830. [Google Scholar] [CrossRef] [PubMed]
- Fabbrini, E.; Yoshino, J.; Yoshino, M.; Magkos, F.; Tiemann Luecking, C.; Samovski, D.; Fraterrigo, G.; Okunade, A.L.; Patterson, B.W.; Klein, S. Metabolically normal obese people are protected from adverse effects following weight gain. J. Clin. Investig. 2015, 125, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef] [PubMed]
- Marik, P.E.; Varon, J. ω-3 Dietary supplements and the risk of cardiovascular events: A systematic review. Clin. Cardiol. 2009, 32, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Delarue, J.; LeFoll, C.; Corporeau, C.; Lucas, D. n-3 Long chain polyunsaturated fatty acids: A nutritional tool to prevent insulin resistance associated to type 2 diabetes and obesity? Reprod. Nutr. Dev. 2004, 44, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Buckley, J.D.; Howe, P.R. Long-chain ω-3 polyunsaturated fatty acids may be beneficial for reducing obesity-a review. Nutrients 2010, 2, 1212–1230. [Google Scholar] [CrossRef] [PubMed]
- Flachs, P.; Rossmeisl, M.; Bryhn, M.; Kopecky, J. Cellular and molecular effects of n-3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clin. Sci. 2009, 116. [Google Scholar] [CrossRef] [PubMed]
- Torres-Fuentes, C.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. A natural solution for obesity: Bioactives for the prevention and treatment of weight gain. A review. Nutr. Neurosci. 2015, 18, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, M.J.; Hasty, A.H.; Saraswathi, V. The role of adipose tissue in mediating the beneficial effects of dietary fish oil. J. Nutr. Biochem. 2011, 22, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Kalupahana, N.S.; Claycombe, K.J.; Moustaid-Moussa, N. n-3 Fatty acids alleviate adipose tissue inflammation and insulin resistance: Mechanistic insights. Adv. Nutr. 2011, 2, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Pinel, A.; Morio-Liondore, B.; Capel, F. n-3 Polyunsaturated fatty acids modulate metabolism of insulin-sensitive tissues: Implication for the prevention of type 2 diabetes. J. Physiol. Biochem. 2014, 70, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Fernandez, L.; Laiglesia, L.M.; Huerta, A.E.; Martinez, J.A.; Moreno-Aliaga, M.J. ω-3 Fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Other Lipid Mediat. 2015. [Google Scholar] [CrossRef] [PubMed]
- Berge, J.P.; Barnathan, G. Fatty acids from lipids of marine organisms: Molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv. Biochem. Eng. Biotechnol. 2005, 96, 49–125. [Google Scholar] [PubMed]
- Rørå, A.M.B.; Ruyter, B.; Skorve, J.; Berge, R.; Slinning, K.-E. Influence of high content of dietary soybean oil on quality of large fresh, smoked and frozen atlantic salmon (Salmo salar). Aquac. Int. 2005, 13, 217–231. [Google Scholar] [CrossRef]
- Torstensen, B.E.; Bell, J.G.; Rosenlund, G.; Henderson, R.J.; Graff, I.E.; Tocher, D.R.; Lie, O.; Sargent, J.R. Tailoring of atlantic salmon (Salmo salar L.) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend. J. Agric. Food Chem. 2005, 53, 10166–10178. [Google Scholar] [CrossRef] [PubMed]
- Schuchardt, J.P.; Hahn, A. Bioavailability of long-chain ω-3 fatty acids. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89. [Google Scholar] [CrossRef] [PubMed]
- Burdge, G.C.; Finnegan, Y.E.; Minihane, A.M.; Williams, C.M.; Wootton, S.A. Effect of altered dietary n-3 fatty acid intake upon plasma lipid fatty acid composition, conversion of [13C]α-linolenic acid to longer-chain fatty acids and partitioning towards β-oxidation in older men. Br. J. Nutr. 2003, 90, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Bolton-Smith, C.; Woodward, M.; Tavendale, R. Evidence for age-related differences in the fatty acid composition of human adipose tissue, independent of diet. Eur. J. Clin. Nutr. 1997, 51, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Ogura, T.; Takada, H.; Okuno, M.; Kitade, H.; Matsuura, T.; Kwon, M.; Arita, S.; Hamazaki, K.; Itomura, M.; Hamazaki, T. Fatty acid composition of plasma, erythrocytes and adipose: Their correlations and effects of age and sex. Lipids 2010, 45, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.G.; Browning, L.M.; Mander, A.P.; Madden, J.; West, A.L.; Calder, P.C.; Jebb, S.A. Age and sex differences in the incorporation of EPA and DHA into plasma fractions, cells and adipose tissue in humans. Br. J. Nutr. 2014, 111, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Browning, L.M.; Walker, C.G.; Mander, A.P.; West, A.L.; Madden, J.; Gambell, J.M.; Young, S.; Wang, L.; Jebb, S.A.; Calder, P.C. Incorporation of eicosapentaenoic and docosahexaenoic acids into lipid pools when given as supplements providing doses equivalent to typical intakes of oily fish. Am. J. Clin. Nutr. 2012, 96, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Katan, M.B.; Deslypere, J.P.; van Birgelen, A.P.; Penders, M.; Zegwaard, M. Kinetics of the incorporation of dietary fatty acids into serum cholesteryl esters, erythrocyte membranes, and adipose tissue: An 18-month controlled study. J. Lipid Res. 1997, 38, 2012–2022. [Google Scholar] [PubMed]
- Leaf, D.A.; Connor, W.E.; Barstad, L.; Sexton, G. Incorporation of dietary n-3 fatty acids into the fatty acids of human adipose tissue and plasma lipid classes. Am. J. Clin. Nutr. 1995, 62, 68–73. [Google Scholar] [PubMed]
- Mostad, I.L.; Bjerve, K.S.; Bjorgaas, M.R.; Lydersen, S.; Grill, V. Effects of n-3 fatty acids in subjects with type 2 diabetes: Reduction of insulin sensitivity and time-dependent alteration from carbohydrate to fat oxidation. Am. J. Clin. Nutr. 2006, 84, 540–550. [Google Scholar] [PubMed]
- Gammelmark, A.; Madsen, T.; Varming, K.; Lundbye-Christensen, S.; Schmidt, E.B. Low-dose fish oil supplementation increases serum adiponectin without affecting inflammatory markers in overweight subjects. Nutr. Res. 2012, 32, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Witt, P.M.; Christensen, J.H.; Ewertz, M.; Aardestrup, I.V.; Schmidt, E.B. The incorporation of marine n-3 PUFA into platelets and adipose tissue in pre- and postmenopausal women: A randomised, double-blind, placebo-controlled trial. Br. J. Nutr. 2010, 104, 318–325. [Google Scholar] [CrossRef] [PubMed]
- McQuaid, S.E.; Humphreys, S.M.; Hodson, L.; Fielding, B.A.; Karpe, F.; Frayn, K.N. Femoral adipose tissue may accumulate the fat that has been recycled as VLDL and nonesterified fatty acids. Diabetes 2010, 59, 2465–2473. [Google Scholar] [CrossRef] [PubMed]
- Kunesova, M.; Hlavaty, P.; Tvrzicka, E.; Stankova, B.; Kalouskova, P.; Viguerie, N.; Larsen, T.M.; van Baak, M.A.; Jebb, S.A.; Martinez, J.A.; et al. Fatty acid composition of adipose tissue triglycerides after weight loss and weight maintenance: The diogenes study. Physiol. Res. 2012, 61, 597–607. [Google Scholar] [PubMed]
- Buckley, J.D.; Howe, P.R. Anti-obesity effects of long-chain ω-3 polyunsaturated fatty acids. Obes. Rev. 2009, 10, 648–659. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Jin, J.; Fang, W.; Su, Q. Does fish oil have an anti-obesity effect in overweight/obese adults? A meta-analysis of randomized controlled trials. PLoS ONE 2015, 10, e0142652. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Kameyama, T.; Ohori, T.; Matsuki, A.; Inoue, H. Effects of eicosapentaenoic acid treatment on epicardial and abdominal visceral adipose tissue volumes in patients with coronary artery disease. J. Atheroscler. Thromb. 2014, 21, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Todorcevic, M.; Kjaer, M.A.; Djakovic, N.; Vegusdal, A.; Torstensen, B.E.; Ruyter, B. n-3 HUFAs affect fat deposition, susceptibility to oxidative stress, and apoptosis in Atlantic salmon visceral adipose tissue. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2009, 152, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Ruzickova, J.; Rossmeisl, M.; Prazak, T.; Flachs, P.; Sponarova, J.; Veck, M.; Tvrzicka, E.; Bryhn, M.; Kopecky, J. ω-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids 2004, 39, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Camargo, A.; Meneses, M.E.; Perez-Martinez, P.; Delgado-Lista, J.; Jimenez-Gomez, Y.; Cruz-Teno, C.; Tinahones, F.J.; Paniagua, J.A.; Perez-Jimenez, F.; Roche, H.M.; et al. Dietary fat differentially influences the lipids storage on the adipose tissue in metabolic syndrome patients. Eur. J. Nutr. 2014, 53, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Guebre-Egziabher, F.; Debard, C.; Drai, J.; Denis, L.; Pesenti, S.; Bienvenu, J.; Vidal, H.; Laville, M.; Fouque, D. Differential dose effect of fish oil on inflammation and adipose tissue gene expression in chronic kidney disease patients. Nutrition 2013, 29, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Itariu, B.K.; Zeyda, M.; Hochbrugger, E.E.; Neuhofer, A.; Prager, G.; Schindler, K.; Bohdjalian, A.; Mascher, D.; Vangala, S.; Schranz, M.; et al. Long-chain n-3 pufas reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 96, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Gomez, Y.; Cruz-Teno, C.; Rangel-Zuniga, O.A.; Peinado, J.R.; Perez-Martinez, P.; Delgado-Lista, J.; Garcia-Rios, A.; Camargo, A.; Vazquez-Martinez, R.; Ortega-Bellido, M.; et al. Effect of dietary fat modification on subcutaneous white adipose tissue insulin sensitivity in patients with metabolic syndrome. Mol. Nutr. Food Res. 2014, 58, 2177–2188. [Google Scholar] [CrossRef] [PubMed]
- Kratz, M.; Kuzma, J.N.; Hagman, D.K.; van Yserloo, B.; Matthys, C.C.; Callahan, H.S.; Weigle, D.S. N3 PUFAs do not affect adipose tissue inflammation in overweight to moderately obese men and women. J. Nutr. 2013, 143, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Pena-Orihuela, P.; Camargo, A.; Rangel-Zuniga, O.A.; Perez-Martinez, P.; Cruz-Teno, C.; Delgado-Lista, J.; Yubero-Serrano, E.M.; Paniagua, J.A.; Tinahones, F.J.; Malagon, M.M.; et al. Antioxidant system response is modified by dietary fat in adipose tissue of metabolic syndrome patients. J. Nutr. Biochem. 2013, 24, 1717–1723. [Google Scholar] [CrossRef] [PubMed]
- Spencer, M.; Finlin, B.S.; Unal, R.; Zhu, B.; Morris, A.J.; Shipp, L.R.; Lee, J.; Walton, R.G.; Adu, A.; Erfani, R.; et al. ω-3 Fatty acids reduce adipose tissue macrophages in human subjects with insulin resistance. Diabetes 2013, 62, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Baillie, R.A.; Takada, R.; Nakamura, M.; Clarke, S.D. Coordinate induction of peroxisomal acyl-coa oxidase and UCP-3 by dietary fish oil: A mechanism for decreased body fat deposition. Prostaglandins Leukot. Essent. Fat. Acids 1999, 60, 351–356. [Google Scholar] [CrossRef]
- Belzung, F.; Raclot, T.; Groscolas, R. Fish oil n-3 fatty acids selectively limit the hypertrophy of abdominal fat depots in growing rats fed high-fat diets. Am. J. Physiol. 1993, 264, R1111–R1118. [Google Scholar] [PubMed]
- Flachs, P.; Horakova, O.; Brauner, P.; Rossmeisl, M.; Pecina, P.; Franssen-van Hal, N.; Ruzickova, J.; Sponarova, J.; Drahota, Z.; Vlcek, C.; et al. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce β-oxidation in white fat. Diabetologia 2005, 48, 2365–2375. [Google Scholar] [CrossRef] [PubMed]
- Hainault, I.; Carolotti, M.; Hajduch, E.; Guichard, C.; Lavau, M. Fish oil in a high lard diet prevents obesity, hyperlipemia, and adipocyte insulin resistance in rats. Ann. N. Y. Acad. Sci. 1993, 683, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 is an ω-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Perez-Matute, P.; Perez-Echarri, N.; Martinez, J.A.; Marti, A.; Moreno-Aliaga, M.J. Eicosapentaenoic acid actions on adiposity and insulin resistance in control and high-fat-fed rats: Role of apoptosis, adiponectin and tumour necrosis factor-α. Br. J. Nutr. 2007, 97, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Saraswathi, V.; Gao, L.; Morrow, J.D.; Chait, A.; Niswender, K.D.; Hasty, A.H. Fish oil increases cholesterol storage in white adipose tissue with concomitant decreases in inflammation, hepatic steatosis, and atherosclerosis in mice. J. Nutr. 2007, 137, 1776–1782. [Google Scholar] [PubMed]
- Barber, E.; Sinclair, A.J.; Cameron-Smith, D. Comparative actions of ω-3 fatty acids on in-vitro lipid droplet formation. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 359–366. [Google Scholar] [CrossRef] [PubMed]
- DeClercq, V.; d’Eon, B.; McLeod, R.S. Fatty acids increase adiponectin secretion through both classical and exosome pathways. Biochim. Biophys. Acta 2015, 1851, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Xie, W.; Lei, T.; Hamilton, J.A. Eicosapentaenoic acid, but not oleic acid, stimulates β-oxidation in adipocytes. Lipids 2005, 40, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Della-Fera, M.; Lin, J.; Baile, C.A. Docosahexaenoic acid inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 preadipocytes. J. Nutr. 2006, 136, 2965–2969. [Google Scholar] [PubMed]
- Kusunoki, C.; Yang, L.; Yoshizaki, T.; Nakagawa, F.; Ishikado, A.; Kondo, M.; Morino, K.; Sekine, O.; Ugi, S.; Nishio, Y.; et al. ω-3 Polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2013, 430, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Lorente-Cebrian, S.; Bustos, M.; Marti, A.; Martinez, J.A.; Moreno-Aliaga, M.J. Eicosapentaenoic acid up-regulates apelin secretion and gene expression in 3T3-L1 adipocytes. Mol. Nutr. Food Res. 2010, 54, S104–S111. [Google Scholar] [CrossRef] [PubMed]
- Murali, G.; Desouza, C.V.; Clevenger, M.E.; Ramalingam, R.; Saraswathi, V. Differential effects of eicosapentaenoic acid and docosahexaenoic acid in promoting the differentiation of 3T3-L1 preadipocytes. Prostaglandins Leukot. Essent. Fat. Acids 2014, 90, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Murumalla, R.K.; Gunasekaran, M.K.; Padhan, J.K.; Bencharif, K.; Gence, L.; Festy, F.; Cesari, M.; Roche, R.; Hoareau, L. Fatty acids do not pay the toll: Effect of SFA and PUFA on human adipose tissue and mature adipocytes inflammation. Lipids Health Dis. 2012, 11, 175. [Google Scholar] [CrossRef] [PubMed]
- Oster, R.T.; Tishinsky, J.M.; Yuan, Z.; Robinson, L.E. Docosahexaenoic acid increases cellular adiponectin mRNA and secreted adiponectin protein, as well as PPARγ mRNA, in 3T3-L1 adipocytes. Appl. Physiol. Nutr. Metab. 2010, 35, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Prostek, A.; Gajewska, M.; Kamola, D.; Balasinska, B. The influence of EPA and DHA on markers of inflammation in 3T3-L1 cells at different stages of cellular maturation. Lipids Health Dis. 2014, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Tishinsky, J.M.; Ma, D.W.; Robinson, L.E. Eicosapentaenoic acid and rosiglitazone increase adiponectin in an additive and PPARγ-dependent manner in human adipocytes. Obesity 2011, 19, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, H.; Cheema, S.K. Arachidonic acid has a dominant effect to regulate lipogenic genes in 3T3-L1 adipocytes compared to ω-3 fatty acids. Food Nutr. Res. 2015, 59, 25866. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Kuo, W.H.; Chen, C.Y.; Lin, H.Y.; Wu, H.T.; Liu, B.H.; Chen, C.H.; Mersmann, H.J.; Chang, K.J.; Ding, S.T. Docosahexaenoic acid regulates serum amyloid a protein to promote lipolysis through down regulation of perilipin. J. Nutr. Biochem. 2010, 21, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, C.; Lohe, K.; Kuang, C.; Xiao, Y.; Jouni, Z.; Poels, E. Modulation of adipocyte differentiation by ω-3 polyunsaturated fatty acids involves the ubiquitin-proteasome system. J. Cell. Mol. Med. 2014, 18, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Hodson, L.; Humphreys, S.M.; Karpe, F.; Frayn, K.N. Metabolic signatures of human adipose tissue hypoxia in obesity. Diabetes 2013, 62, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Li, J.; Liu, P. Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, ctenopharyngodon idellus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011, 159, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, C.; Huang, J.; Ji, H. Regulation of adipocytes lipolysis by n-3 HUFA in grass carp (Ctenopharyngodon idellus) in vitro and in vivo. Fish. Physiol. Biochem. 2014, 40, 1447–1460. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.; Beall, M.; Ross, M.G. Developmental origins of obesity: Programmed adipogenesis. Curr. Diab. Rep. 2013, 13, 27–33. [Google Scholar] [CrossRef] [PubMed]
- McMillen, I.C.; Robinson, J.S. Developmental origins of the metabolic syndrome: Prediction, plasticity, and programming. Physiol. Rev. 2005, 85, 571–633. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Ehrenberg, H.M. The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG 2006, 113, 1126–1133. [Google Scholar] [CrossRef] [PubMed]
- Sewell, M.F.; Huston-Presley, L.; Super, D.M.; Catalano, P. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am. J. Obstet. Gynecol. 2006, 195, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Muhlhausler, B.S.; Gibson, R.A.; Makrides, M. The effect of maternal ω-3 long-chain polyunsaturated fatty acid (n-3 LCPUFA) supplementation during pregnancy and/or lactation on body fat mass in the offspring: A systematic review of animal studies. Prostaglandins Leukot. Essent. Fat. Acids 2011, 85, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Muhlhausler, B.S.; Miljkovic, D.; Fong, L.; Xian, C.J.; Duthoit, E.; Gibson, R.A. Maternal ω-3 supplementation increases fat mass in male and female rat offspring. Front. Genet. 2011, 2, 48. [Google Scholar] [CrossRef] [PubMed]
- Hilton, C.; Karpe, F.; Pinnick, K.E. Role of developmental transcription factors in white, brown and beige adipose tissues. Biochim. Biophys. Acta 2015, 1851, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Pinnick, K.E.; Neville, M.J.; Fielding, B.A.; Frayn, K.N.; Karpe, F.; Hodson, L. Gluteofemoral adipose tissue plays a major role in production of the lipokine palmitoleate in humans. Diabetes 2012, 61, 1399–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinnick, K.E.; Nicholson, G.; Manolopoulos, K.N.; McQuaid, S.E.; Valet, P.; Frayn, K.N.; Denton, N.; Min, J.L.; Zondervan, K.T.; Fleckner, J.; et al. Distinct developmental profile of lower-body adipose tissue defines resistance against obesity-associated metabolic complications. Diabetes 2014, 63, 3785–3797. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Kwun, I.S.; Kim, Y. Eicosapentaenoic acid increases lipolysis through up-regulation of the lipolytic gene expression and down-regulation of the adipogenic gene expression in 3T3-L1 adipocytes. Genes Nutr. 2008, 2, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Todorcevic, M.; Vegusdal, A.; Gjoen, T.; Sundvold, H.; Torstensen, B.E.; Kjaer, M.A.; Ruyter, B. Changes in fatty acids metabolism during differentiation of atlantic salmon preadipocytes; effects of n-3 and n-9 fatty acids. Biochim. Biophys. Acta 2008, 1781, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Wendel, M.; Heller, A.R. Anticancer actions of ω-3 fatty acids–Current state and future perspectives. Anticancer Agents Med. Chem. 2009, 9, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Prins, J.B.; Walker, N.I.; Winterford, C.M.; Cameron, D.P. Apoptosis of human adipocytes in vitro. Biochem. Biophys. Res. Commun. 1994, 201, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Prins, J.B.; O'Rahilly, S. Regulation of adipose cell number in man. Clin. Sci. 1997, 92, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Nelson-Dooley, C.; Della-Fera, M.A.; Hamrick, M.; Baile, C.A. Novel treatments for obesity and osteoporosis: Targeting apoptotic pathways in adipocytes. Curr. Med. Chem. 2005, 12, 2215–2225. [Google Scholar] [CrossRef] [PubMed]
- Wyllie, A.H. Apoptosis: An overview. Br. Med. Bull. 1997, 53, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Tocher, D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- Abele, D.; Puntarulo, S. Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2004, 138, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Biondo, P.D.; Brindley, D.N.; Sawyer, M.B.; Field, C.J. The potential for treatment with dietary long-chain polyunsaturated n-3 fatty acids during chemotherapy. J. Nutr. Biochem. 2008, 19, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Calviello, G.; Palozza, P.; Maggiano, N.; Piccioni, E.; Franceschelli, P.; Frattucci, A.; Di Nicuolo, F.; Bartoli, G.M. Cell proliferation, differentiation, and apoptosis are modified by n-3 polyunsaturated fatty acids in normal colonic mucosa. Lipids 1999, 34, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Todorcevic, M.; Skugor, S.; Ruyter, B. Alterations in oxidative stress status modulate terminal differentiation in atlantic salmon adipocytes cultivated in media rich in n-3 fatty acids. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010, 156, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Maassen, J.A.; Romijn, J.A.; Heine, R.J. Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and β cell dysfunction: Do adipocytes consume sufficient amounts of oxygen to oxidise fatty acids? Diabetologia 2008, 51, 907–908. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, F.G.; Wang, P.; van Baak, M.; Saris, W.H.; Mariman, E.C. Increased β-oxidation with improved glucose uptake capacity in adipose tissue from obese after weight loss and maintenance. Obesity 2014, 22, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Couet, C.; Delarue, J.; Ritz, P.; Antoine, J.M.; Lamisse, F. Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int. J. Obes. Relat. Metab. Disord. 1997, 21, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Lorente-Cebrian, S.; Bustos, M.; Marti, A.; Martinez, J.A.; Moreno-Aliaga, M.J. Eicosapentaenoic acid stimulates amp-activated protein kinase and increases visfatin secretion in cultured murine adipocytes. Clin. Sci. 2009, 117, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Flachs, P.; Rossmeisl, M.; Kuda, O.; Kopecky, J. Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: A key to lean phenotype. Biochim. Biophys. Acta 2013, 1831, 986–1003. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Chen, X. Eicosapentaenoic acid promotes thermogenic and fatty acid storage capacity in mouse subcutaneous adipocytes. Biochem. Biophys. Res. Commun. 2014, 450, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- Hosogai, N.; Fukuhara, A.; Oshima, K.; Miyata, Y.; Tanaka, S.; Segawa, K.; Furukawa, S.; Tochino, Y.; Komuro, R.; Matsuda, M.; et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007, 56, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Trayhurn, P.; Wood, I.S. Adipokines: Inflammation and the pleiotropic role of white adipose tissue. Br. J. Nutr. 2004, 92, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Wood, I.S.; de Heredia, F.P.; Wang, B.; Trayhurn, P. Cellular hypoxia and adipose tissue dysfunction in obesity. Proc. Nutr. Soc. 2009, 68, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Gao, Z.; Yin, J.; He, Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E1118–E1128. [Google Scholar] [CrossRef] [PubMed]
- Todoric, J.; Loffler, M.; Huber, J.; Bilban, M.; Reimers, M.; Kadl, A.; Zeyda, M.; Waldhausl, W.; Stulnig, T.M. Adipose tissue inflammation induced by high-fat diet in obese diabetic mice is prevented by n-3 polyunsaturated fatty acids. Diabetologia 2006, 49, 2109–2119. [Google Scholar] [CrossRef] [PubMed]
- Fantuzzi, G. Adiponectin and inflammation: Consensus and controversy. J. Allergy Clin. Immunol. 2008, 121, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Romacho, T.; Glosse, P.; Richter, I.; Elsen, M.; Schoemaker, M.H.; van Tol, E.A.; Eckel, J. Nutritional ingredients modulate adipokine secretion and inflammation in human primary adipocytes. Nutrients 2015, 7, 865–886. [Google Scholar] [CrossRef] [PubMed]
- Lorente-Cebrian, S.; Perez-Matute, P.; Martinez, J.A.; Marti, A.; Moreno-Aliaga, M.J. Effects of eicosapentaenoic acid (EPA) on adiponectin gene expression and secretion in primary cultured rat adipocytes. J. Physiol. Biochem. 2006, 62, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Kaji, H.; Takahashi, Y.; Iida, K.; Mizuno, I.; Okimura, Y.; Abe, H.; Chihara, K. Stimulation by eicosapentaenoic acids of leptin mrna expression and its secretion in mouse 3T3-L1 adipocytes in vitro. Biochem. Biophys. Res. Commun. 2000, 270, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Perez-Matute, P.; Marti, A.; Martinez, J.A.; Fernandez-Otero, M.P.; Stanhope, K.L.; Havel, P.J.; Moreno-Aliaga, M.J. Eicosapentaenoic fatty acid increases leptin secretion from primary cultured rat adipocytes: Role of glucose metabolism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R1682–R1688. [Google Scholar] [CrossRef] [PubMed]
- Reseland, J.E.; Haugen, F.; Hollung, K.; Solvoll, K.; Halvorsen, B.; Brude, I.R.; Nenseter, M.S.; Christiansen, E.N.; Drevon, C.A. Reduction of leptin gene expression by dietary polyunsaturated fatty acids. J. Lipid Res. 2001, 42, 743–750. [Google Scholar] [PubMed]
- Aranceta, J.; Perez-Rodrigo, C. Recommended dietary reference intakes, nutritional goals and dietary guidelines for fat and fatty acids: A systematic review. Br. J. Nutr. 2012, 107, S8–S22. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todorčević, M.; Hodson, L. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function. J. Clin. Med. 2016, 5, 3. https://doi.org/10.3390/jcm5010003
Todorčević M, Hodson L. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function. Journal of Clinical Medicine. 2016; 5(1):3. https://doi.org/10.3390/jcm5010003
Chicago/Turabian StyleTodorčević, Marijana, and Leanne Hodson. 2016. "The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function" Journal of Clinical Medicine 5, no. 1: 3. https://doi.org/10.3390/jcm5010003
APA StyleTodorčević, M., & Hodson, L. (2016). The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function. Journal of Clinical Medicine, 5(1), 3. https://doi.org/10.3390/jcm5010003