A Higher Intake of Energy at Dinner Is Associated with Incident Metabolic Syndrome: A Prospective Cohort Study in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Dietary Assessment
2.3. Metabolic Syndrome
2.4. Potential Confounders
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Importance and Practical Consequences
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albrecht, U. Timing to Perfection: The Biology of Central and Peripheral Circadian Clocks. Neuron 2012, 74, 246–260. [Google Scholar] [CrossRef] [Green Version]
- Johnston, J.D.; Ordovás, J.M.; Scheer, F.A.; Turek, F.W. Circadian Rhythms, Metabolism, and Chrononutrition in Rodents and Humans. Adv. Nutr. 2016, 7, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, A.; Bechtold, D.A.; Pot, G.K.; Johnston, J.D. Chrono-nutrition: From molecular and neuronal mechanisms to human epidemiology and timed feeding patterns. J. Neurochem. 2021, 157, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Skene, D.J.; Arendt, J. Human circadian rhythms: Physiological and therapeutic relevance of light and melatonin. Ann. Clin. Biochem. Int. J. Lab. Med. 2006, 43 Pt 5, 344–353. [Google Scholar] [CrossRef]
- Lopez-Minguez, J.; Gómez-Abellán, P.; Garaulet, M. Timing of Breakfast, Lunch, and Dinner. Effects on Obesity and Metabolic Risk. Nutrients 2019, 11, 2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garaulet, M.; Gomez-Abellan, P. Chronobiology and obesity. Nutr. Hosp. 2013, 28 (Suppl. 5), 114–120. [Google Scholar]
- Li, S.; Lin, J.D. Molecular control of circadian metabolic rhythms. J. Appl. Physiol. 2009, 107, 1959–1964. [Google Scholar] [CrossRef]
- Mattson, M.P.; Allison, D.; Fontana, L.; Harvie, M.; Longo, V.D.; Malaisse, W.J.; Mosley, M.; Notterpek, L.; Ravussin, E.; Scheer, F.; et al. Meal frequency and timing in health and disease. Proc. Natl. Acad. Sci. USA 2014, 111, 16647–16653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molzof, H.E.; Wirth, M.D.; Burch, J.B.; Shivappa, N.; Hebert, J.R.; Johnson, R.L.; Gamble, K.L. The impact of meal timing on cardiometabolic syndrome indicators in shift workers. Chronobiol. Int. 2017, 34, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.B.; Patterson, R.E.; Ang, A.; Emond, J.A.; Shetty, N.; Arab, L. Timing of energy intake during the day is associated with the risk of obesity in adults. J. Hum. Nutr. Diet. 2014, 27 (Suppl. 2), 255–262. [Google Scholar] [CrossRef]
- Hermenegildo, Y.; Lopez-Garcia, E.; Garcia-Esquinas, E.; Perez-Tasigchana, R.F.; Rodriguez-Artalejo, F.; Guallar-Castillon, P. Distribution of energy intake throughout the day and weight gain: A population-based cohort study in Spain. Br. J. Nutr. 2016, 115, 2003–2010. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Artalejo, F.; Graciani, A.; Guallar-Castillón, P.; León-Muñoz, L.M.; Zuluaga, M.C.; López-García, E.; Gutiérrez-Fisac, J.L.; Taboada, J.M.; Aguilera, M.T.; Regidor, E.; et al. Rationale and Methods of the Study on Nutrition and Cardiovascular Risk in Spain (ENRICA). Rev. Esp. Cardiol. 2011, 64, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Guallar-Castillón, P.; Sagardui-Villamor, J.; Balboa-Castillo, T.; Sala-Vila, A.; Astolfi, M.J.A.; Pelous, M.D.S.; León-Muñoz, L.M.; Graciani, A.; Laclaustra, M.; Benito, C.; et al. Validity and Reproducibility of a Spanish Dietary History. PLoS ONE 2014, 9, e86074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrán, A.Z.R.; Cervera, P. Tablas de Composición de Alimentos del CESNID; McGraw-Hill Interamericana: Madrid, Spain, 2003. [Google Scholar]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- Gutiérrez-Fisac, J.L.; Guallar-Castillon, P.; León-Muñoz, L.M.; Graciani, A.; Banegas, J.R.; Rodríguez-Artalejo, F. Prevalence of general and abdominal obesity in the adult population of Spain, 2008–2010: The ENRICA study. Obes. Rev. 2011, 13, 388–392. [Google Scholar] [CrossRef]
- Navarro-Vidal, B.; Banegas, J.R.; Leon-Munoz, L.M.; Rodriguez-Artalejo, F.; Graciani, A. Achievement of cardiometabolic goals among diabetic patients in Spain. A nationwide population-based study. PLoS ONE 2013, 8, e61549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banegas, J.R.; Graciani, A.; de la Cruz-Troca, J.J.; Leon-Munoz, L.M.; Guallar-Castillon, P.; Coca, A.; Ruilope, L.M.; Rodríguez-Artalejo, F. Achievement of cardiometabolic goals in aware hypertensive patients in Spain: A nationwide population-based study. Hypertension 2012, 60, 898–905. [Google Scholar] [CrossRef] [Green Version]
- Pols, M.A.; Peeters, P.H.; Ocke, M.C.; Slimani, N.; Bueno-de-Mesquita, H.B.; Collette, H.J. Estimation of reproducibility and relative validity of the questions included in the EPIC Physical Activity Questionnaire. Int. J. Epidemiol. 1997, 26 (Suppl. 1), S181–S189. [Google Scholar] [CrossRef] [Green Version]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B.; Stampfer, M.J.; Rimm, E.; Ascherio, A.; Rosner, B.A.; Spiegelman, D.; Willett, W.C. Dietary Fat and Coronary Heart Disease: A Comparison of Approaches for Adjusting for Total Energy Intake and Modeling Repeated Dietary Measurements. Am. J. Epidemiol. 1999, 149, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Medina, F. Food Culture in Spain; Greenwood Press: Westport, CT, USA, 2005; p. 90. [Google Scholar]
- Kutsuma, A.; Nakajima, K.; Suwa, K. Potential Association between Breakfast Skipping and Concomitant Late-Night-Dinner Eating with Metabolic Syndrome and Proteinuria in the Japanese Population. Scientifica 2014, 2014, 253581. [Google Scholar] [CrossRef]
- Ha, K.; Song, Y. Associations of meal timing and frequency with obesity and metabolic syndrome among Korean adults. Nutrients 2019, 11, 2437. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, J.; Eguchi, E.; Nagaoka, K.; Ito, T.; Ogino, K. Association of night eating habits with metabolic syndrome and its components: A longitudinal study. BMC Public Health 2018, 18, 1366. [Google Scholar] [CrossRef]
- Xiao, Q.; Garaulet, M.; Scheer, F.A.J.L. Meal timing and obesity: Interactions with macronutrient intake and chronotype. Int. J. Obes. 2019, 43, 1701–1711. [Google Scholar] [CrossRef]
- Grundy, S.M. What is the contribution of obesity to the metabolic syndrome? Endocrinol. Metab. Clin. N. Am. 2004, 33, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.S.; Tsai, J.-Y.; Villegas-Montoya, C.; Boland, B.; Blasier, Z.; Egbejimi, O.; Kueht, M.; Young, M.E. Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int. J. Obes. 2010, 34, 1589–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turek, F.W.; Joshu, C.; Kohsaka, A.; Lin, E.; Ivanova, G.; McDearmon, E.; Laposky, A.; Losee-Olson, S.; Easton, A.; Jensen, D.R.; et al. Obesity and Metabolic Syndrome in Circadian Clock Mutant Mice. Science 2005, 308, 1043–1045. [Google Scholar] [CrossRef] [Green Version]
- Gibney, M.J.; Barr, S.I.; Bellisle, F.; Drewnowski, A.; Fagt, S.; Livingstone, B.; Masset, G.; Moreiras, G.V.; Moreno, L.A.; Smith, J.; et al. Breakfast in Human Nutrition: The International Breakfast Research Initiative. Nutrients 2018, 10, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St-Onge, M.-P.; Ard, J.; Baskin, M.L.; Chiuve, S.E.; Johnson, H.M.; Kris-Etherton, P.; Varady, K.; American Heart Association Obesity Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Clinical Cardiology. Meal Timing and Frequency: Implications for Cardiovascular Disease Prevention: A Scientific Statement From the American Heart Association. Circulation 2017, 135, e96–e121. [Google Scholar] [CrossRef]
- Crosby, P.; Hamnett, R.; Putker, M.; Hoyle, N.P.; Reed, M.; Karam, C.J.; Maywood, E.S.; Stangherlin, A.; Chesham, J.E.; Hayter, E.; et al. Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time. Cell 2019, 177, 896–909.e20. [Google Scholar] [CrossRef] [Green Version]
- McHill, A.W.; Phillips, A.J.; Czeisler, C.A.; Keating, L.; Yee, K.; Barger, L.K.; Garaulet, M.; Scheer, F.; Klerman, E.B. Later circadian timing of food intake is associated with increased body fat. Am. J. Clin. Nutr. 2017, 106, 1213–1219. [Google Scholar] [CrossRef]
- Page, A.J.; Christie, S.; Symonds, E.; Li, H. Circadian regulation of appetite and time restricted feeding. Physiol. Behav. 2020, 220, 112873. [Google Scholar] [CrossRef] [PubMed]
- Guallar-Castillón, P.; Gil-Montero, M.; León-Muñoz, L.M.; Graciani, A.; Bayán-Bravo, A.; Taboada, J.M.; Banegas, J.R.; Rodríguez-Artalejo, F. Magnitude and Management of Hypercholesterolemia in the Adult Population of Spain, 2008–2010: The ENRICA Study. Rev. Esp. Cardiol. 2012, 65, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Oda, E. Metabolic syndrome: Its history, mechanisms, and limitations. Acta Diabetol. 2011, 49, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Samson, S.L.; Garber, A.J. Metabolic syndrome. Endocrinol. Metab. Clin. N. Am. 2014, 43, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Sherling, D.H.; Perumareddi, P.; Hennekens, C.H. Metabolic Syndrome. J. Cardiovasc. Pharmacol. Ther. 2017, 22, 365–367. [Google Scholar] [CrossRef]
- Berrea, L.; Frias-Toral, E.; Aprano, S.; Castellucci, B.; Pugliese, G.; Rodriguez-Veintimilla, D.; Vitale, G.; Gentilini, D.; Colao, A.; Savastano, S.; et al. The clock diet: A practical nutrition guide to manage obesity through chrononutrition. Minerva Med. 2021. [Google Scholar] [CrossRef]
- Horn, C.; Laupsa-Borge, J.; Andersen, A.I.O.; Dyer, L.; Revheim, I.; Leikanger, T.; Næsheim, N.T.; Storås, I.; Johannessen, K.K.; Mellgren, G.; et al. Meal patterns associated with energy intake in people with obesity. Br. J. Nutr. 2021, 12, 1–48. [Google Scholar] [CrossRef]
Energy Intake (kcal/day) | ||||
---|---|---|---|---|
Eating Occasions | % of Energy Intake | Mean | SD | Skipping Eating Occasion (%) |
Breakfast | 17.1 | 339.2 | 210.5 | 0.7 |
Mid-morning snack | 4.2 | 89.0 | 151.8 | 41.5 |
Lunch | 41.9 | 840.4 | 284.7 | 0.0 |
Afternoon snack | 4.0 | 82.3 | 118.2 | 38.4 |
Dinner | 27.8 | 563.2 | 235.7 | 0.3 |
Snacking | 5.0 | 108.3 | 165.9 | 37.7 |
Total energy | 100.0 | 2022.5 | 559.4 | - |
Breakfast † | Lunch † | Dinner † | ||||
---|---|---|---|---|---|---|
Q1 | Q4 | Q1 | Q4 | Q1 | Q4 | |
Sex, % of women | 51.3 | 51.7 | 51.3 | 51.7 | 51.3 | 51.7 |
Age (years), mean | 67.0 (5.6) | 67.6 (6.2) | 66.9 (5.9) | 67.7 (5.6) | 67.4 (5.8) | 67.2 (5.6) |
Breakfast † | Lunch † | Dinner † | ||||
Level of education, % | ||||||
Primary or less | 42.1 | 41.1 | 35.5 | 45.7 | 39.5 | 42.4 |
Secondary | 31.6 | 31.8 | 30.9 | 31.8 | 30.9 | 31.1 |
University | 26.3 | 27.2 | 33.6 | 22.5 * | 29.6 | 26.5 |
Smoking status, % | ||||||
Never smoker | 53.3 | 66.2 | 53.3 | 58.9 | 62.5 | 53.0 |
Former smoker | 32.2 | 27.8 | 33.6 | 33.1 | 30.3 | 30.5 |
Current smoker | 14.5 | 6.0 ** | 13.2 | 8.0 | 7.2 | 16.6 ** |
Ex-drinker, % | 11.2 | 6.0 | 12.5 | 6.0 | 7.9 | 6.0 |
Energy (kcal/day), mean | 2095 (562) | 1951 ** (591) | 2184 (637) | 1924 *** (501) | 2016 (609) | 2001 (516) |
Physical activity during leisure time (METs h/week), mean | 23.2 (14.6) | 25.7 (18.1) | 24.1 (17.2) | 22.3 (16.6) | 23.9 (18.5) | 24.4 (15.3) |
Physical activity in the household (METs h/week), mean | 37.8 (31.2) | 35.6 (28.2) | 37.4 (30.9) | 38.6 (28.8) | 38.0 (32.2) | 33.8 (28.4) |
Watching TV (h/week), mean | 18.2 (11.6) | 15.4 * (10.4) | 15.4 (10.3) | 15.9 (11.2) | 16.4 (12.6) | 17.7 (10.1) |
Sleeping time (hour/day), mean | 7.2 (1.2) | 7.2 (1.3) | 7.1 (1.5) | 7.3 (1.5) | 7.2 (1.4) | 7.2 (1.3) |
Body mass index (kg/m2), mean | 27.5 (3.4) | 26.8 * (3.6) | 26.7 (3.3) | 27.6 (4.0) | 26.7 (3.6) | 27.2 (3.2) |
Dieting, % | 10.5 | 6.0 | 7.2 | 9.3 | 6.6 | 8.6 |
Ethanol intake (g/day), mean | 15.6 (22.1) | 8.6 ** (15.1) | 9.8 (17.9) | 12.7 (16.7) | 11.2 (16.8) | 14.6 (22.2) |
MEDAS score, mean | 7.8 (1.8) | 7.4 (1.7) | 6.8 (2.0) | 7.8 *** (1.7) | 7.3 (1.9) | 7.6 (1.6) |
Coronary disease, % | 0 | 2.0 | 0.7 | 0 | 1.3 | 0 |
Chronic respiratory disease, % | 9.2 | 6.6 | 5.9 | 8.0 | 6.6 | 6.0 |
Cancer, % | 2.6 | 2.0 | 2.0 | 1.3 | 2.0 | 2.7 |
Osteoarthritis, % | 33.6 | 38.4 | 36.8 | 41.7 | 37.5 | 38.4 |
Arthritis, % | 12.5 | 7.3 | 11.2 | 6.0 | 7.2 | 13.9 |
Model 1 | Model 2 | ||
---|---|---|---|
N/Cases | OR (95% CI) | OR (95% CI) | |
Breakfast † | 607/101 | ||
Quartile 1 (lowest) | 152/25 | Ref | Ref |
Quartile 2 | 152/33 | 1.51 (0.83–2.73) | 1.46 (0.78–2.75) |
Quartile 3 | 152/26 | 1.12 (0.58–2.17) | 1.28 (0.64–2.55) |
Quartile 4 (highest) | 151/17 | 0.79 (0.35–1.80) | 0.84 (0.35–1.97) |
p for trend | 0.619 | 0.815 | |
Mid-morning snack † | 607/101 | ||
Quartile 1 (lowest) | 252/43 | Ref | Ref |
Quartile 2 | 119/23 | 1.32 (0.73–2.41) | 1.26 (0.67–2.37) |
Quartile 3 | 118/18 | 0.98 (0.51–1.86) | 0.97 (0.50–1.91) |
Quartile 4 (highest) | 118/17 | 1.14 (0.55–2.36) | 1.09 (0.51–2.34) |
p for trend | 0.838 | 0.910 | |
Lunch † | 607/101 | ||
Quartile 1 (lowest) | 152/22 | Ref | Ref |
Quartile 2 | 152/24 | 0.99 (0.51–1.91) | 1.05 (0.53–2.08) |
Quartile 3 | 152/24 | 0.99 (0.50–1.98) | 1.10 (0.53–2.29) |
Quartile 4 (highest) | 151/31 | 1.62 (0.73–3.58) | 1.71 (0.73–3.97) |
p for trend | 0.300 | 0.258 | |
Afternoon snack † | 607/101 | ||
Quartile 1 (lowest) | 233/39 | Ref | Ref |
Quartile 2 | 125/25 | 1.34 (0.74–2.41) | 1.31 (0.71–2.43) |
Quartile 3 | 125/19 | 0.96 (0.51–1.81) | 1.12 (0.58–2.17) |
Quartile 4 (highest) | 124/18 | 1.07 (0.53–2.15) | 1.05 (0.50–2.19) |
p for trend | 0.978 | 0.871 | |
Dinner † | 607/101 | ||
Quartile 1 (lowest) | 152/16 | Ref | Ref |
Quartile 2 | 152/27 | 1.76 (0.89–3.46) | 1.71 (0.85–3.46) |
Quartile 3 | 152/26 | 1.69 (0.84–3.41) | 1.70 (0.81–3.54) |
Quartile 4 (highest) | 151/32 | 2.31 (1.06–5.03) * | 2.57 (1.14–5.79) * |
p for trend | 0.054 | 0.034 | |
Snacking † | 607/101 | ||
Quartile 1 (lowest) | 229/38 | Ref | Ref |
Quartile 2 | 127/22 | 1.09 (0.60–2.00) | 1.17 (0.62–2.19) |
Quartile 3 | 126/24 | 1.30 (0.71–2.37) | 1.15 (0.61–2.16) |
Quartile 4 (highest) | 125/17 | 1.00 (0.48–2.10) | 1.07 (0.49–2.34) |
p for trend | 0.723 | 0.748 |
Model 1 | Model 2 | ||
---|---|---|---|
N/Events | OR (95% CI) | OR (95% CI) | |
Isocaloric substitution of energy consumed at breakfast for dinner | 607/101 | ||
Quartile 1 (lowest) | 152/16 | Ref | Ref |
Quartile 2 | 152/27 | 1.79 (0.92–3.52) | 1.76 (0.87–3.55) |
Quartile 3 | 152/26 | 1.76 (0.89–3.49) | 1.75 (0.85–3.57) |
Quartile 4 (highest) | 151/32 | 2.53 (1.26–5.07) ** | 2.73 (1.31–5.68) ** |
p for trend | 0.014 | 0.011 | |
Isocaloric substitution of energy consumed at lunch for dinner | |||
Quartile 1 (lowest) | 152/16 | Ref | Ref |
Quartile 2 | 152/27 | 1.72 (0.87–3.37) | 1.70 (0.84–3.43) |
Quartile 3 | 152/26 | 1.58 (0.80–3.15) | 1.57 (0.76–3.22) |
Quartile 4 (highest) | 151/32 | 1.97 (0.97–4.01) | 2.17 (1.03–4.54) * |
p for trend | 0.095 | 0.065 | |
Isocaloric substitution of energy consumed at all other occasions for dinner | |||
Quartile 1 (lowest) | 152/16 | Ref | Ref |
Quartile 2 | 152/27 | 1.79 (0.92–3.49) | 1.76 (0.88–3.53) |
Quartile 3 | 152/26 | 1.70 (0.87–3.32) | 1.66 (0.82–3.36) |
Quartile 4 (highest) | 151/32 | 2.26 (1.18–4.35) * | 2.42 (1.22–4.81) * |
p for trend | 0.024 | 0.019 |
Model 1 | Model 2 | |||
---|---|---|---|---|
N/Events | OR (95% CI) | N/Events | OR (95% CI) | |
Abdominal Obesity | 647/176 | 647/176 | ||
Quartile 1 (lowest) | 162/36 | Ref | 162/36 | Ref |
Quartile 2 | 162/40 | 1.18 (0.69–2.02) | 162/40 | 1.10 (0.61–2.00) |
Quartile 3 | 162/48 | 1.62 (0.93–2.81) | 162/48 | 1.82 (0.98–3.36) |
Quartile 4 (highest) | 161/52 | 1.99 (1.06–3.74) * | 161/52 | 2.15 (1.08–4.25) * |
p for trend | 0.020 | 0.013 | ||
Hyperglycemia/diabetes | 834/150 | 834/150 | ||
Quartile 1 (lowest) | 209/37 | Ref | 209/37 | Ref |
Quartile 2 | 209/29 | 0.75 (0.44–1.30) | 209/29 | 0.75 (0.43–1.30) |
Quartile 3 | 209/38 | 1.04 (0.61–1.77) | 209/38 | 1.00 (0.58–1.73) |
Quartile 4 (highest) | 207/46 | 1.40 (0.75–2.59) | 207/46 | 1.34 (0.72–2.50) |
p for trend | 0.239 | 0.308 | ||
Arterial hypertension | 241/102 | 241/102 | ||
Quartile 1 (lowest) | 61/28 | Ref | 61/28 | Ref |
Quartile 2 | 60/23 | 0.81 (0.37–1.74) | 60/23 | 0.79 (0.36–1.76) |
Quartile 3 | 61/23 | 0.73 (0.33–1.58) | 61/23 | 0.75 (0.33–1.70) |
Quartile 4 (highest) | 59/28 | 0.87 (0.36–2.11) | 59/28 | 0.86 (0.33–2.22) |
p for trend | 0.656 | 0.671 | ||
Hypertriglyceridemia | 1141/98 | 1141/98 | ||
Quartile 1 (lowest) | 286/24 | Ref | 286/24 | Ref |
Quartile 2 | 285/18 | 0.80 (0.42–1.52) | 285/18 | 0.82 (0.42–1.60) |
Quartile 3 | 286/28 | 1.53 (0.82–2.87) | 286/28 | 1.66 (0.87–3.19) |
Quartile 4 (highest) | 284/28 | 1.92 (0.93–3.97) | 284/28 | 2.07 (0.98–4.35) |
p for trend | 0.038 | 0.025 | ||
Low HDL-cholesterol | 1109/156 | 1109/156 | ||
Quartile 1 (lowest) | 278/36 | Ref | 278/36 | Ref |
Quartile 2 | 277/43 | 1.20 (0.74–1.96) | 277/43 | 1.18 (0.71 -1.95) |
Quartile 3 | 277/40 | 1.06 (0.64–1.77) | 277/40 | 1.12 (0.66 –1.92) |
Quartile 4 (highest) | 277/37 | 0.86 (0.47–1.57) | 277/37 | 0.89 (0.48–1.67) |
p for trend | 0.626 | 0.773 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermenegildo-López, Y.; Donat-Vargas, C.; Sandoval-Insausti, H.; Moreno-Franco, B.; Rodríguez-Ayala, M.; Rey-García, J.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. A Higher Intake of Energy at Dinner Is Associated with Incident Metabolic Syndrome: A Prospective Cohort Study in Older Adults. Nutrients 2021, 13, 3035. https://doi.org/10.3390/nu13093035
Hermenegildo-López Y, Donat-Vargas C, Sandoval-Insausti H, Moreno-Franco B, Rodríguez-Ayala M, Rey-García J, Banegas JR, Rodríguez-Artalejo F, Guallar-Castillón P. A Higher Intake of Energy at Dinner Is Associated with Incident Metabolic Syndrome: A Prospective Cohort Study in Older Adults. Nutrients. 2021; 13(9):3035. https://doi.org/10.3390/nu13093035
Chicago/Turabian StyleHermenegildo-López, Ygor, Carolina Donat-Vargas, Helena Sandoval-Insausti, Belén Moreno-Franco, Monserrat Rodríguez-Ayala, Jimena Rey-García, José Ramón Banegas, Fernando Rodríguez-Artalejo, and Pilar Guallar-Castillón. 2021. "A Higher Intake of Energy at Dinner Is Associated with Incident Metabolic Syndrome: A Prospective Cohort Study in Older Adults" Nutrients 13, no. 9: 3035. https://doi.org/10.3390/nu13093035
APA StyleHermenegildo-López, Y., Donat-Vargas, C., Sandoval-Insausti, H., Moreno-Franco, B., Rodríguez-Ayala, M., Rey-García, J., Banegas, J. R., Rodríguez-Artalejo, F., & Guallar-Castillón, P. (2021). A Higher Intake of Energy at Dinner Is Associated with Incident Metabolic Syndrome: A Prospective Cohort Study in Older Adults. Nutrients, 13(9), 3035. https://doi.org/10.3390/nu13093035