Effects of Chronic Thermal Stress on Performance, Energy Metabolism, Antioxidant Activity, Brain Serotonin, and Blood Biochemical Indices of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds and Management
2.2. Blood Sampling and Biochemical Analyses
2.3. Determination of Brain Serotonin
2.4. Determination of Antioxidant Activity in Heart Tissues
2.5. Determination of CoQ10 and Energy Biomarkers in Liver Tissues
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, H.; Jiao, H.C.; Buyse, J.; Decuypere, E. Strategies for preventing heat stress in poultry. World’s Poult. Sci. J. 2006, 62, 71–85. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef] [Green Version]
- Swennen, Q.; Verhulst, P.-J.; Collin, A.; Bordas, A.; Verbeke, K.; Vansant, G.; Decuypere, E.; Buyse, J. Further investigations on the role of dietinduced thermogenesis in the regulation of feed intake in chickens: Comparison of adult cockerels E62 Bottje and Carstens of lines selected for high or low residual feed intake. Poult. Sci. 2007, 86, 1960–1971. [Google Scholar] [CrossRef]
- Quinteiro-Filho, W.M.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Sakai, M.; Sá, L.R.M.; Ferreira, A.J.P.; Palermo-Neto, J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 2010, 89, 1905–1914. [Google Scholar] [CrossRef] [PubMed]
- Gous, R.M. Nutritional limitations on growth and development in poultry. Livest. Sci. 2010, 130, 25–32. [Google Scholar] [CrossRef]
- El-Tarabany, M.S. Effect of thermal stress on fertility and egg quality of Japanese quail. J. Therm. Biol. 2016, 61, 38–43. [Google Scholar] [CrossRef]
- Roushdy, E.M.; Zaglool, A.W.; El-Tarabany, M.S. Effects of chronic thermal stress on growth performance, carcass traits, antioxidant indices and the expression of HSP70, growth hormone and superoxide dismutase genes in two broiler strains. J. Therm. Biol. 2018, 74, 337–343. [Google Scholar] [CrossRef]
- Akbarian, A.; Golian, A.; Kermanshahi, H.; De Smet, S.; Michiels, J. Antioxidant enzyme activities, plasma hormone levels and serum metabolites of finishing broiler chickens reared under high ambient temperature and fed lemon and orange peel extracts and C urcuma xanthorrhiza essential oil. J. Anim. Physiol. Anim. Nutr. 2015, 99, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujahid, A.; Pumford, N.R.; Bottje, W.; Nakagawa, K.; Miyazawa, T.; Akiba, Y.; Toyomizu, M. Mitochondrial oxidative damage in chicken skeletal muscle induced by acute heat stress. J. Poult. Sci. 2007, 44, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, D.; Li, J.; Liu, Y.; Gu, X.; Teng, X. Cadmium-induced oxidative stress and immunosuppression mediated mitochondrial apoptosis via JNK-FoxO3a-PUMA pathway in common carp (Cyprinus carpio L.) gills. Aquat. Toxicol. 2021, 233, 105775. [Google Scholar] [CrossRef]
- Shah, S.W.A.; Chen, D.; Zhang, J.; Liu, Y.; Ishfaq, M.; Tang, Y.; Teng, X. The effect of ammonia exposure on energy metabolism and mitochondrial dynamic proteins in chicken thymus: Through oxidative stress, apoptosis, and autophagy. Ecotoxicol. Environ. Saf. 2020, 206, 111413. [Google Scholar] [CrossRef]
- Raybould, H.E. Visceral perception: Sensory transduction in visceral afferents and nutrients. Gut 2002, 51 (Suppl. 1), i11–i14. [Google Scholar] [CrossRef]
- Fink, C.; Tatar, M.; Failing, K.; Hospes, R.; Kressin, M.; Klisch, K. Serotonin-Containing cells in the gastrointestinal tract of newborn foals and adult horses. Anat. Hist. Embryol. 2006, 35, 23–27. [Google Scholar] [CrossRef]
- Ducy, P. 5-HT and bone biology. Curr. Opin. Pharmacol. 2011, 11, 34–38. [Google Scholar] [CrossRef]
- Calefi, A.S.; Fonseca, J.G.D.S.; Nunes, C.A.Q.; Lima, A.P.N.; Quinteiro-Filho, W.M.; Flório, J.C.; Zager, A.; Ferreira, A.J.P.; Palermo-Neto, J. Heat stress modulates brain monoamines and their metabolites production in broiler chickens co-infected with Clostridium perfringens type A and Eimeria spp. Vet. Sci. 2019, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NRC. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- JAKIM (Department of Islamic Development Malaysia). Malaysian Protocol for the Halal Meat and Poultry Productions; JAKIM: Putrajaya, Malaysia, 2011; pp. 1–30. [Google Scholar]
- Arafa, N.M.S.; Salem, S.M.A.; Farid, O.A.H.A. Influence of echinacea extract pre- or postnatal supplementation on immune and oxidative status of growing rabbits. Ital. J. Anim. Sci. 2010, 9, 338–343. [Google Scholar]
- Pagel, P.; Blome, J.; Wolf, H.U. High-performance liquid chromatographic separation and measurement of various biogenic compounds possibly involved in the pathomechanism of Parkinson’s disease. J. Chromatogr. B 2000, 746, 297–304. [Google Scholar] [CrossRef]
- Ahmed-Farid, O.A.; Nasr, M.; Ahmed, R.F.; Bakeer, R.M. Beneficial effects of Curcumin nano-emulsion on spermatogenesis and reproductive performance in male rats under protein deficient diet model: Enhancement of sperm motility, conservancy of testicular tissue integrity, cell energy and seminal plasma amino acids content. J. Biomed. Sci. 2017, 24, 66. [Google Scholar]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [PubMed]
- Teerlink, T.; Hennekes, M.; Bussemaker, J.; Groeneveld, J. Simultaneous determination of creatine compounds and adenine nucleotides in myocardial tissue by high-performance liquid chromatography. Anal. Biochem. 1993, 214, 278–283. [Google Scholar] [CrossRef]
- Niklowitz, P.; Doring, F.; Paulussen, M.; Menke, T. Determination of coenzyme Q10 tissue status viahigh-performance liquid chromatography with electrochemical detection in swine tissues (Sus scrofa domestica). Anal. Biochem. 2013, 437, 88–94. [Google Scholar] [CrossRef]
- Geraert, P.A.; Guillaumin, S.; Leclercq, B. Are genetically lean broilers more resistant to hot climate? Br. Poult. Sci. 1993, 34, 643–653. [Google Scholar] [CrossRef]
- Alhenaky, A.; Abdelqader, A.; Abuajamieh, M.; Al Fataftah, A.R. The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. J. Therm. Biol. 2017, 70, 9–14. [Google Scholar] [CrossRef]
- Bayraktar, B.; Tekce, E.; Aksakal, V.; Gül, M.; Takma, C.; Bayraktar, S.; Bayraktar, F.G.; Eser, G. Effect of the addition of essential fatty acid mixture to the drinking water of the heat stress broilers on adipokine (Apelin, BDNF) response, histopathologic findings in liver and intestines, and some blood parameters. Ital. J. Anim. Sci. 2020, 19, 656–666. [Google Scholar] [CrossRef]
- Olfati, A.; Mojtahedin, A.; Sadeghi, T.; Akbari, M.; MartínezPastor, F. Comparison of growth performance and immune responses of broiler chicks Reared under heat stress, Cold stress and thermoneutral conditions. Span. J. Agric. Res. 2018, 16, e0505. [Google Scholar] [CrossRef] [Green Version]
- Goo, D.; Kim, J.H.; Park, G.; Reyes, J.; Kil, D. Effect of heat stress and Stocking Density on growth performance, Breast meat quality, and intestinal barrier function in broiler chickens. Animals 2019, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Awad, E.A.; Najaa, M.; Zulaikha, Z.A.; Zulkifli, I.; Soleimani, A.F. Effects of heat stress on growth performance, selected physiological and immunological parameters, caecal microflora, and meat quality in two broiler strains. Asian Australas J. Anim. Sci. 2020, 33, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Attia, Y.A.; Hassan, S.S. Broiler tolerance to heat stress at various dietary protein/energy levels. Eur. Poult. Sci. 2017, 81. [Google Scholar] [CrossRef]
- Orosco, M.; Nicolaidis, S. Spontaneous feeding-related monoaminergic changes in the rostromedial hypothala-mus revealed by microdialysis. Physiol. Behav. 1992, 52, 1015–1019. [Google Scholar] [CrossRef]
- Chauloff, F. Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Res. Rev. 1993, 18, 1–32. [Google Scholar] [CrossRef]
- Delesalle, C.; van de Walle, G.R.; Nolten, C.; Donck, L.V.; Hemelrijck, A.; Drinkenburg, W.; Bosschere, H.; Claes, P.; Deprez, P.; Lefère, L.; et al. Determination of the source of increased serotonin (5-HT) concentrations in blood and peritoneal fluid of colic horses with compromised bowel. Equine Vet. J. 2008, 40, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, W.; Yuan, S.; Chen, H. The effect of different dietary levels of thyme essential oil on serum biochemical indices in Mahua broiler chickens. Ital. J. Anim. Sci. 2014, 13, 576–581. [Google Scholar] [CrossRef] [Green Version]
- Polat, U.; Yesilbag, D.; Eren, M. Serum biochemical profile of broiler chickens fed diets containing rosemary and rosemary volatile oil. J. Biol. Environ. Sci. 2011, 5, 29–30. [Google Scholar]
- Zhang, J.; Bai, K.W.; He, J.; Niu, Y.; Lu, Y.; Zhang, L.; Wang, T. Curcumin attenuates hepatic mitochondrial dysfunction through the maintenance of thiol pool, inhibition of mtDNA damage, and stimulation of the mitochondrial thioredoxin system in heat-stressed broilers. J. Anim. Sci. 2018, 96, 867–879. [Google Scholar] [CrossRef] [Green Version]
- Lan, R.; Wei, L.; Chang, Q.; Wu, S.; Zhihui, Z. Effects of dietary chitosan oligosaccharides on oxidative stress and inflammation response in liver and spleen of yellow-feather broilers exposed to high ambient temperature. Ital. J. Anim. Sci. 2020, 19, 1508–1517. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; El-Shafey, A.S.; Rehab, Y.A.; Kim, W.K. Enhancing tolerance of broiler chickens to heat stress by supplementation with vitamin E, vitamin C and/or probiotics. Ann. Anim. Sci. 2017, 17, 1155–1169. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues Bueno, J.P.; Bueno de Mattos Nascimento, M.R.; Machado da Silva Martins, J.; Ferreira Prazeres Marchini, C.; Ruggeri Menezes Gotardo, L.; Miranda Ribeiro de Sousa, G.; Mundim, A.V.; Carvalho Guimarães, E.; Pereira Rinaldi, F. Effect of age and cyclical heat stress on the serum biochemical profile of broiler chickens. Semin. Ciências Agrárias 2017, 38, 1383–1392. [Google Scholar] [CrossRef] [Green Version]
- Zaglool, A.W.; Roushdy, E.M.; El-Tarabany, M.S. Impact of strain and duration of thermal stress on carcass yield, metabolic hormones, immunological indices and the expression of HSP90 and Myogenin genes in broilers. Res. Vet. Sci. 2019, 122, 193–199. [Google Scholar] [CrossRef]
- Borges, S.; Fischer da Silva, A.; Majorka, A.; Hooge, D.; Cummings, K. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance (sodium plus potassium minus chloride, milliequivalents per kilogram). Poult. Sci. 2004, 83, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, H.A.; Thaxton, J.P.; Dozier, W.A.; Branton, S.L. Electrolyte diets, stress, and acid-base balance in broiler chickens. Poult. Sci. 2007, 86, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.A.; Kikusato, M.; Maekawa, T.; Shirakawa, H.; Toyomizu, M. Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2010, 155, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Song, J.; Liu, L.; Luo, J.; Tian, G.; Yang, Y. Effect of epigallocatechin gallate on growth performance and antioxidant capacity in heat-stressed broilers. Arch. Anim. Nutr. 2017, 71, 362–372. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Jia, G.Q.; Zuo, J.J.; Zhang, Y.; Lei, J.; Ren, L.; Feng, D.Y. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult. Sci. 2012, 91, 2931–2937. [Google Scholar] [CrossRef]
- Zeng, T.; Li, J.J.; Wang, D.Q.; Li, G.Q.; Wang, G.L.; Lu, L.Z. Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: Evidence for differential thermal sensitivities. Cell Stress Chaperones 2014, 19, 895–901. [Google Scholar] [CrossRef]
- Joung, J.Y.; Cho, J.H.; Kim, Y.H.; Choi, S.H.; Son, C.G. A literature review for the mechanisms of stress-induced liver injury. Brain Behav. 2019, 9, e01235. [Google Scholar] [CrossRef]
- Chen, C.L.; Sangiah, S.; Chen, H.; Roder, J.D.; Shen, Y. Effects of heat stress on Na+, K+-ATPase, Mg2+-activated ATPase, and Na+-ATPase activities of broiler chickens vital organs. J. Toxicol. Environ. Health Part A 1994, 41, 345–356. [Google Scholar] [CrossRef]
- Chen, Z.; Xie, J.; Wang, B.; Tang, J. Effect of gammaaminobutyric acid on digestive enzymes, absorption function, and immune function of intestinal mucosa in heatstressed chicken. Poult. Sci. 2014, 93, 2490–2500. [Google Scholar] [CrossRef] [PubMed]
- Gopi, M.; Purushothaman, M.R.; Chandrasekaran, D. Effect of dietary coenzyme Q10 supplementation on the growth rate, carcass characters and cost effectiveness of broiler fed with three energy levels. SpringerPlus 2014, 3, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, A.L.; Guo, Y.M.; Yang, Y. Reduction of ascites mortality in broilers by coenzyme Q10. Poult. Sci. 2004, 83, 1587–1593. [Google Scholar] [CrossRef]
- Xu, J.; Tang, S.; Yin, B.; Sun, J.R.; Song, E.B.; Bao, E.D. Co-enzyme Q10 and Acetyl salicylic acid enhance Hsp70 expression in primary chicken myocardial cells to protect the cells during heat stress. Mol. Cell. Biochem. 2017, 435, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Buraczewska, L.; Nguyen, C.V.; Mieczkowska, A. Effects of acidifier added to diets containing graded levels of crystalline tryptophan on growth performance, protein digestibility, and on brain. J. Anim. Feed Sci. 2004, 13, 289–300. [Google Scholar]
- Denbow, D.M.; Hobbs, F.C.; Hulet, R.M.; Graham, P.P.; Potter, L.M. Supplemental dietary L-tryptophan effects on growth, meat quality, and brain catecholamine and indolamine concentrations in turkeys. Br. Poult. Sci. 1993, 34, 715–724. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Starter Period (1–21 d, g kg−1) | Grower–Finisher Period (22–42 d, g kg−1) |
---|---|---|
Yellow maize | 605.0 | 650.0 |
Soybean meal (48%) | 308.0 | 250.0 |
Corn gluten (60%) | 40.0 | 35.0 |
Maize oil | - | 18.0 |
Di-calcium phosphate | 23.0 | 23.0 |
Limestone | 14.0 | 14.0 |
DL-methionine | 1.0 | 1.0 |
Lysine | 1.0 | 1.0 |
Vitamin and trace mineral mix | 3.5 | 3.5 |
Salt (NaCl) | 3.5 | 3.5 |
Coccidostate | 1.0 | 1.0 |
Calculated analysis | ||
1 ME (KJ/kg) | 12342 | 12949 |
Crude protein | 224.0 | 197.5 |
Calcium | 10.5 | 10.5 |
Available phosphorus | 4.5 | 4.5 |
Lysine | 11.8 | 11.4 |
Methionine | 4.8 | 4.5 |
Parameter | Experimental Groups | |||
---|---|---|---|---|
TN 1 | TS 2 | SEM 3 | p-Value | |
Total protein (g/dL) | 6.63 | 5.86 | 0.14 | 0.001 |
Albumin (g/dL) | 4.38 | 4.07 | 0.07 | 0.025 |
Globulin (g/dL) | 2.25 | 1.79 | 0.11 | 0.032 |
Albumin/Globulin ratio | 2.01 | 2.32 | 0.13 | 0.239 |
Cholesterol (mg/dL) | 79.33 | 84.95 | 1.37 | 0.033 |
4 ALT (U/L) | 54.96 | 60.60 | 1.31 | 0.024 |
5 AST (U/L) | 44.40 | 53.35 | 1.91 | 0.010 |
K+ (mmol/L) | 4.04 | 3.94 | 0.08 | 0.603 |
Na+ (mmol/L) | 133.4 | 113.9 | 3.69 | 0.002 |
Parameter | Experimental Groups | |||
---|---|---|---|---|
TN 1 | TS 2 | SEM 3 | p-Value | |
4 SOD (U/g, heart) | 43.20 | 35.21 | 1.60 | 0.005 |
5 Catalase (U/g, heart) | 12.78 | 9.22 | 0.57 | 0.001 |
5 TAC (U/L, serum) | 1.51 | 1.38 | 0.03 | 0.021 |
Parameter | Experimental Groups | |||
---|---|---|---|---|
TN 1 | TS 2 | SEM 3 | p-Value | |
4 ATP (μg/g) | 36.86 | 30.15 | 1.34 | 0.005 |
5 ADP (μg/g) | 22.63 | 26.11 | 0.68 | 0.004 |
6 AMP (μg/g) | 9.37 | 10.38 | 0.25 | 0.029 |
Na,K-ATPase (μmol/g) | 469.9 | 515.2 | 13.5 | 0.115 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed-Farid, O.A.; Salah, A.S.; Nassan, M.A.; El-Tarabany, M.S. Effects of Chronic Thermal Stress on Performance, Energy Metabolism, Antioxidant Activity, Brain Serotonin, and Blood Biochemical Indices of Broiler Chickens. Animals 2021, 11, 2554. https://doi.org/10.3390/ani11092554
Ahmed-Farid OA, Salah AS, Nassan MA, El-Tarabany MS. Effects of Chronic Thermal Stress on Performance, Energy Metabolism, Antioxidant Activity, Brain Serotonin, and Blood Biochemical Indices of Broiler Chickens. Animals. 2021; 11(9):2554. https://doi.org/10.3390/ani11092554
Chicago/Turabian StyleAhmed-Farid, Omar A., Ayman S. Salah, Mohamed Abdo Nassan, and Mahmoud S. El-Tarabany. 2021. "Effects of Chronic Thermal Stress on Performance, Energy Metabolism, Antioxidant Activity, Brain Serotonin, and Blood Biochemical Indices of Broiler Chickens" Animals 11, no. 9: 2554. https://doi.org/10.3390/ani11092554
APA StyleAhmed-Farid, O. A., Salah, A. S., Nassan, M. A., & El-Tarabany, M. S. (2021). Effects of Chronic Thermal Stress on Performance, Energy Metabolism, Antioxidant Activity, Brain Serotonin, and Blood Biochemical Indices of Broiler Chickens. Animals, 11(9), 2554. https://doi.org/10.3390/ani11092554