Dietary Advanced Glycation End-Products and Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Ethical Considerations
2.3. Dietary Assessment and dAGEs Estimation
2.4. Identification of CRC Cases
2.5. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Abbreviations
References
- IARC. Global Cancer Observatory-Cancer Today; IARC-WHO: Lyon, France, 2020. [Google Scholar]
- Fidler, M.M.; Soerjomataram, I.; Bray, F. A global view on cancer incidence and national levels of the human development index. Int. J. Cancer 2016, 139, 2436–2446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safiri, S.; Sepanlou, S.G.; Ikuta, K.S.; Bisignano, C.; Salimzadeh, H.; Delavari, A.; Ansari, R.; Roshandel, G.; Merat, S.; Fitzmaurice, C.; et al. The global, regional, and national burden of colorectal cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2019, 4, 913–933. [Google Scholar] [CrossRef] [Green Version]
- Murphy, N.; Moreno, V.; Hughes, D.J.; Vodicka, L.; Vodicka, P.; Aglago, E.K.; Gunter, M.J.; Jenab, M. Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Mol. Asp. Med. 2019, 69, 2–9. [Google Scholar] [CrossRef]
- Mehta, R.S.; Song, M.; Nishihara, R.; Drew, D.A.; Wu, K.; Qian, Z.R.; Fung, T.T.; Hamada, T.; Masugi, Y.; da Silva, A.; et al. Dietary Patterns and Risk of Colorectal Cancer: Analysis by Tumor Location and Molecular Subtypes. Gastroenterology 2017, 152, 1944–1953.e1. [Google Scholar] [CrossRef] [Green Version]
- Fournet, M.; Bonté, F.; Desmoulière, A. Glycation Damage: A Possible Hub for Major Pathophysiological Disorders and Aging. Aging Dis. 2018, 9, 880–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aragno, M.; Mastrocola, R. Dietary Sugars and Endogenous Formation of Advanced Glycation Endproducts: Emerging Mechanisms of Disease. Nutrients 2017, 9, 385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moura, F.A.; Goulart, M.O.F.; Campos, S.B.G.; da Paz Martins, A.S. The Close Interplay of Nitro-Oxidative Stress, Advanced Glycation end Products and Inflammation in Inflammatory Bowel Diseases. Curr. Med. Chem. 2020, 27, 2059–2076. [Google Scholar] [CrossRef] [PubMed]
- Somoza, V.; Wenzel, E.; Weiss, C.; Clawin-Rädecker, I.; Grübel, N.; Erbersdobler, H.F. Dose-dependent utilisation of casein-linked lysinoalanine, N(epsilon)-fructoselysine and N(epsilon)-carboxymethyllysine in rats. Mol. Nutr. Food Res. 2006, 50, 833–841. [Google Scholar] [CrossRef]
- Koschinsky, T.; He, C.J.; Mitsuhashi, T.; Bucala, R.; Liu, C.; Buenting, C.; Heitmann, K.; Vlassara, H. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. USA 1997, 94, 6474–6479. [Google Scholar] [CrossRef] [Green Version]
- Henle, T. AGEs in foods: Do they play a role in uremia? Kidney Int. 2003, 63, S145–S147. [Google Scholar] [CrossRef] [Green Version]
- Uribarri, J.; Cai, W.; Sandu, O.; Peppa, M.; Goldberg, T.; Vlassara, H. Diet-derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann. N. Y. Acad. Sci. 2005, 1043, 461–466. [Google Scholar] [CrossRef]
- Geicu, O.I.; Stanca, L.; Voicu, S.N.; Dinischiotu, A.; Bilteanu, L.; Serban, A.I.; Calu, V. Dietary AGEs involvement in colonic inflammation and cancer: Insights from an in vitro enterocyte model. Sci. Rep. 2020, 10, 2754. [Google Scholar] [CrossRef] [Green Version]
- Sakellariou, S.; Fragkou, P.; Levidou, G.; Gargalionis, A.N.; Piperi, C.; Dalagiorgou, G.; Adamopoulos, C.; Saetta, A.; Agrogiannis, G.; Theohari, I.; et al. Clinical significance of AGE-RAGE axis in colorectal cancer: Associations with glyoxalase-I, adiponectin receptor expression and prognosis. BMC Cancer 2016, 16, 174. [Google Scholar] [CrossRef] [Green Version]
- Qu, W.; Yuan, X.; Zhao, J.; Zhang, Y.; Hu, J.; Wang, J.; Li, J. Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Mol. Nutr. Food Res. 2017, 61, 1700118. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Takino, J.-I.; Furuno, S.; Shirai, H.; Kawakami, M.; Muramatsu, M.; Kobayashi, Y.; Yamagishi, S.-I. Assessment of the Concentrations of Various Advanced Glycation End-Products in Beverages and Foods That Are Commonly Consumed in Japan. PLoS ONE 2015, 10, e0118652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheijen, J.; Clevers, E.; Engelen, L.; Dagnelie, P.C.; Brouns, F.; Stehouwer, C.D.A.; Schalkwijk, C.G. Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food Chem. 2016, 190, 1145–1150. [Google Scholar] [CrossRef] [PubMed]
- Riboli, E.; Hunt, K.J.; Slimani, N.; Ferrari, P.; Norat, T.; Fahey, M.; Charrondiere, U.R.; Hemon, B.; Casagrande, C.; Vignat, J.; et al. European Prospective Investigation into Cancer and Nutrition (EPIC): Study populations and data collection. Public Health Nutr. 2002, 5, 1113–1124. [Google Scholar] [CrossRef]
- Slimani, N.; Casagrande, C.; Nicolas, G.; Freisling, H.; Huybrechts, I.; Ocke, M.C. The standardized computerized 24-h dietary recall method EPIC-Soft adapted for pan-European dietary monitoring. Eur. J. Clin. Nutr. 2011, 65 (Suppl. S1), S5–S15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slimani, N.; Ferrari, P.; Ocké, M.; Welch, A.; Boeing, H.; Liere, M.; Pala, V.; Amiano, P.; Lagiou, A.; Mattisson, I.; et al. Standardization of the 24-hour diet recall calibration method used in the european prospective investigation into cancer and nutrition (EPIC): General concepts and preliminary results. Eur. J. Clin. Nutr. 2000, 54, 900–917. [Google Scholar] [CrossRef]
- Slimani, N.; Deharveng, G.; Unwin, I.; Southgate, D.A.; Vignat, J.; Skeie, G.; Salvini, S.; Parpinel, M.; Moller, A.; Ireland, J.; et al. The EPIC nutrient database project (ENDB): A first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur. J. Clin. Nutr. 2007, 61, 1037–1056. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, G.; Witthoft, C.M.; Vignat, J.; Knaze, V.; Huybrechts, I.; Roe, M.; Finglas, P.; Slimani, N. Compilation of a standardised international folate database for EPIC. Food Chem. 2016, 193, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Mayén, A.L.; Aglago, E.K.; Knaze, V.; Cordova, R.; Schalkwijk, C.G.; Wagner, K.H.; Aleksandrova, K.; Fedirko, V.; Keski-Rahkonen, P.; Leitzmann, M.F.; et al. Dietary intake of advanced glycation endproducts and risk of hepatobiliary cancers: A multinational cohort study. Int. J. Cancer 2021, 149, 854–864. [Google Scholar] [CrossRef]
- Jones, P.; Cade, J.E.; Evans, C.E.L.; Hancock, N.; Greenwood, D.C. The Mediterranean diet and risk of colorectal cancer in the UK Women’s Cohort Study. Int. J. Epidemiol. 2017, 46, 1786–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrell, F.E., Jr. Package ‘rms’; The Comprehensive R Archive Network: Vienna, Austria, 2016. [Google Scholar]
- Desquilbet, L.; Mariotti, F. Dose-response analyses using restricted cubic spline functions in public health research. Stat. Med. 2010, 29, 1037–1057. [Google Scholar] [CrossRef] [PubMed]
- Lunn, M.; McNeil, D. Applying Cox regression to competing risks. Biometrics 1995, 51, 524–532. [Google Scholar] [CrossRef]
- Scrucca, L.; Santucci, A.; Aversa, F. Competing risk analysis using R: An easy guide for clinicians. Bone Marrow Transpl. 2007, 40, 381–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ott, C.; Jacobs, K.; Haucke, E.; Navarrete Santos, A.; Grune, T.; Simm, A. Role of advanced glycation end products in cellular signaling. Redox. Biol. 2014, 2, 411–429. [Google Scholar] [CrossRef] [Green Version]
- Palanissami, G.; Paul, S.F.D. RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer-a Review. Horm Cancer 2018, 9, 295–325. [Google Scholar] [CrossRef]
- Snelson, M.; Coughlan, M.T. Dietary Advanced Glycation End Products: Digestion, Metabolism and Modulation of Gut Microbial Ecology. Nutrients 2019, 11, 215. [Google Scholar] [CrossRef] [Green Version]
- Rapin, J.R.; Wiernsperger, N. Possible links between intestinal permeability and food processing: A potential therapeutic niche for glutamine. Clinics 2010, 65, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Shimomoto, T.; Luo, Y.; Ohmori, H.; Chihara, Y.; Fujii, K.; Sasahira, T.; Denda, A.; Kuniyasu, H. Advanced glycation end products (AGE) induce the receptor for AGE in the colonic mucosa of azoxymethane-injected Fischer 344 rats fed with a high-linoleic acid and high-glucose diet. J. Gastroenterol. 2012, 47, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Ray, R.; Singer, D.; Bohme, D.; Burz, D.S.; Rai, V.; Hoffmann, R.; Shekhtman, A. The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs. Biochemistry 2014, 53, 3327–3335. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Reverdatto, S.; Frolov, A.; Hoffmann, R.; Burz, D.S.; Shekhtman, A. Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J. Biol. Chem. 2008, 283, 27255–27269. [Google Scholar] [CrossRef] [Green Version]
- van der Lugt, T.; Venema, K.; van Leeuwen, S.; Vrolijk, M.F.; Opperhuizen, A.; Bast, A. Gastrointestinal digestion of dietary advanced glycation endproducts using an in vitro model of the gastrointestinal tract (TIM-1). Food Funct. 2020, 11, 6297–6307. [Google Scholar] [CrossRef]
- Zenker, H.E.; Teodorowicz, M.; Wichers, H.J.; Hettinga, K.A. No Glycation Required: Interference of Casein in AGE Receptor Binding Tests. Foods 2021, 10, 1836. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, M.; Bunzel, D.; Huch, M.; Franz, C.M.; Kulling, S.E.; Henle, T. Stability of Individual Maillard Reaction Products in the Presence of the Human Colonic Microbiota. J. Agric. Food Chem. 2015, 63, 6723–6730. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, M.; Auerbach, C.; Müller, N.; Samuel, P.; Kammann, S.; Beer, F.; Gunzer, F.; Henle, T. Metabolization of the Advanced Glycation End Product N-ε-Carboxymethyllysine (CML) by Different Probiotic E. coli. Strain. J. Agric. Food Chem. 2019, 67, 1963–1972. [Google Scholar] [CrossRef]
- Bui, T.P.N.; Troise, A.D.; Fogliano, V.; de Vos, W.M. Anaerobic Degradation of N-ε-Carboxymethyllysine, a Major Glycation End-Product, by Human Intestinal Bacteria. J. Agric. Food Chem. 2019, 67, 6594–6602. [Google Scholar] [CrossRef]
- Fatchiyah, F.; Hardiyanti, F.; Widodo, N. Selective Inhibition on RAGE-binding AGEs Required by Bioactive Peptide Alpha-S2 Case in Protein from Goat Ethawah Breed Milk: Study of Biological Modeling. Acta Inform. Med. 2015, 23, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Cordova, R.; Knaze, V.; Viallon, V.; Rust, P.; Schalkwijk, C.G.; Weiderpass, E.; Wagner, K.H.; Mayen-Chacon, A.L.; Aglago, E.K.; Dahm, C.C.; et al. Dietary intake of advanced glycation end products (AGEs) and changes in body weight in European adults. Eur. J. Nutr. 2020, 59, 2893–2904. [Google Scholar] [CrossRef]
- Aune, D.; Chan, D.S.; Lau, R.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2011, 343, d6617. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Chen, X.; Li, L.; Li, B.; Yang, Z. The fate of dietary advanced glycation end products in the body: From oral intake to excretion. Crit. Rev. Food Sci. Nutr. 2020, 60, 3475–3491. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, L.; Yamada-Fowler, N.; Smith, J.; Thornalley, P.J.; Rabbani, N. Arginine-directed glycation and decreased HDL plasma concentration and functionality. Nutr. Diabetes 2014, 4, e134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornalley, P.J. Dicarbonyl intermediates in the maillard reaction. Ann. N. Y. Acad. Sci. 2005, 1043, 111–117. [Google Scholar] [CrossRef]
- Yeh, W.J.; Hsia, S.M.; Lee, W.H.; Wu, C.H. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J. Food Drug Anal. 2017, 25, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Elosta, A.; Ghous, T.; Ahmed, N. Natural products as anti-glycation agents: Possible therapeutic potential for diabetic complications. Curr. Diabetes Rev. 2012, 8, 92–108. [Google Scholar] [CrossRef]
- Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc. 2010, 110, 911–916.e12. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Duan, Z.; Tinker, L.; Sangi-Haghpeykar, H.; Strickler, H.; Ho, G.Y.; Gunter, M.J.; Rohan, T.; Logsdon, C.; White, D.L.; et al. A prospective study of soluble receptor for advanced glycation end-products and colorectal cancer risk in postmenopausal women. Cancer Epidemiol. 2016, 42, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Aglago, E.K.; Schalkwijk, C.G.; Freisling, H.; Fedirko, V.; Hughes, D.J.; Jiao, L.; Dahm, C.C.; Olsen, A.; Tjønneland, A.; Katzke, V.; et al. Plasma concentrations of advanced glycation end-products and colorectal cancer risk in the EPIC study. Carcinogenesis 2021, 42, 705–713. [Google Scholar] [CrossRef]
- Jiao, L.; Taylor, P.R.; Weinstein, S.J.; Graubard, B.I.; Virtamo, J.; Albanes, D.; Stolzenberg-Solomon, R.Z. Advanced glycation end products, soluble receptor for advanced glycation end products, and risk of colorectal cancer. CancerEpidemiol. Biomark. Prev. 2011, 20, 1430–1438. [Google Scholar] [CrossRef] [Green Version]
- de Vos, L.C.; Lefrandt, J.D.; Dullaart, R.P.; Zeebregts, C.J.; Smit, A.J. Advanced glycation end products: An emerging biomarker for adverse outcome in patients with peripheral artery disease. Atherosclerosis 2016, 254, 291–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellwig, M.; Humpf, H.U.; Hengstler, J.; Mally, A.; Vieths, S.; Henle, T. Quality Criteria for Studies on Dietary Glycation Compounds and Human Health. J. Agric. Food Chem. 2019, 67, 11307–11311. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Smith, J.S. Determination of advanced glycation endproducts in cooked meat products. Food Chem. 2015, 168, 190–195. [Google Scholar] [CrossRef] [PubMed]
Quintiles of ∑AGEs Intake | |||||
---|---|---|---|---|---|
Quintile 1 | Quintile 2 | Quintile 3 | Quintile 4 | Quintile 5 | |
Recruitment and follow-up | |||||
Age at recruitment, years | 50.9 ± 9.9 | 50.5 ± 9.7 | 50.2 ± 9.7 | 50.1 ± 9.7 | 51.5 ± 9.7 |
Follow-up, years | 14.1 ± 4.2 | 14.1 ± 4 | 14.1 ± 3.9 | 14.1 ± 3.8 | 14.2 ± 4.1 |
Anthropometry | |||||
BMI, kg/m2 | 25.2 ± 4.2 | 25.3 ± 4.2 | 25.3 ± 4.2 | 25.3 ± 4.2 | 25.1 ± 4.2 |
Socio-demographic and lifestyle * | |||||
Education status, % | |||||
None | 3.3 | 3.5 | 3.5 | 3.7 | 3.6 |
Primary school | 25.5 | 24.9 | 24.9 | 24.8 | 25.0 |
Technical or professional | 23.0 | 24.0 | 23.9 | 23.3 | 22.7 |
Secondary school | 20.6 | 20.6 | 21.3 | 22.3 | 21.0 |
Higher education | 24.7 | 24.4 | 24.3 | 24.2 | 25.1 |
Smoking status, % | |||||
Never | 38.2 | 41.4 | 43.0 | 44.1 | 46.0 |
Current, 1–<16 cigarettes/day | 12.8 | 12.3 | 11.9 | 11.5 | 9.58 |
Current, 16–<=20 cigarettes/day | 8.1 | 6.75 | 6.1 | 5.5 | 4.19 |
Current, >20 cigarettes/day | 2.4 | 1.57 | 1.3 | 1.2 | 0.88 |
Former, quit <=10 years | 9.7 | 9.89 | 9.7 | 9.7 | 9.15 |
Former, quit 11–<20 years | 8.1 | 8.42 | 8.4 | 8.4 | 8.56 |
Former, quit >20 years | 7.8 | 7.83 | 8.1 | 8.0 | 9.22 |
Current, pipe-cigar-occasional | 9.5 | 8.46 | 8.5 | 8.6 | 9.31 |
Physical activity status, % | |||||
Inactive | 21.2 | 19.8 | 19.2 | 18.6 | 19.0 |
Moderately inactive | 33.3 | 33.7 | 33.3 | 32.9 | 33.4 |
Moderately active | 25.2 | 26.7 | 27.0 | 27.5 | 27.0 |
Active | 18.5 | 18.0 | 18.4 | 18.5 | 19.0 |
Daily dietary intake | |||||
Energy intake, kcal | 2052 ± 775 | 2084 ± 639 | 2091 ± 585 | 2092 ± 548 | 2063 ± 512 |
Red meat, g | 44.4 ± 40.3 | 44.6 ± 37 | 43.3 ± 35.2 | 42.0 ± 34.1 | 38.9 ± 33.1 |
Processed meat, g | 30.6 ± 30.7 | 33.1 ± 30 | 34.1 ± 30.2 | 34.1 ± 30.1 | 34.7 ± 32.6 |
Fibre, g | 20.1 ± 8.1 | 22.0 ± 7.4 | 23.1 ± 7.2 | 23.9 ± 7.3 | 25.1 ± 7.9 |
Dairy products, g | 345 ± 271 | 332 ± 237 | 326 ± 229 | 324 ± 224 | 341 ± 226 |
Fish and shellfish, g | 36.7 ± 37.2 | 38.6 ± 37.1 | 38.4 ± 36.7 | 37.6 ± 35.9 | 38.2 ± 34.7 |
Cakes and biscuits, g | 29.0 ± 34.9 | 39.3 ± 40.5 | 45.0 ± 43.4 | 49.2 ± 45.8 | 47.9 ± 46.5 |
Cereal and cereal products, g | 171 ± 101 | 207 ± 105 | 224 ± 106 | 237 ± 108 | 260 ± 121 |
Fruits, nuts, and seeds, g | 242 ± 220 | 235 ± 183 | 231 ± 169 | 228 ± 160 | 225 ± 156 |
Vegetables, g | 205 ± 146 | 198 ± 127 | 193 ± 122 | 190 ± 121 | 200 ± 128 |
Legumes, g | 10.2 ± 18.7 | 13.2 ± 21.7 | 14.8 ± 23.7 | 16.2 ± 25.7 | 16.8 ± 27.2 |
Potatoes and other tubers, g | 100 ± 86.3 | 96 ± 75.1 | 92.0 ± 69.8 | 89 ± 68.3 | 93 ± 69.2 |
Egg and egg products, g | 17.6 ± 18.7 | 18.2 ± 17 | 18.2 ± 16.5 | 18.1 ± 16.6 | 17.8 ± 17.1 |
Fat, g | 79.9 ± 35.5 | 81.3 ± 29.8 | 81.1 ± 27.6 | 80.6 ± 26.5 | 78.4 ± 25.9 |
Sugar and confectionery, g | 50.3 ± 76.3 | 44.3 ± 45.4 | 41.8 ± 38.7 | 39.8 ± 36.2 | 37.6 ± 33.4 |
Alcohol, g | 18.9 ± 25 | 13.1 ± 16.5 | 10.9 ± 14.1 | 9.3 ± 12.5 | 8.3 ± 11.3 |
Mediterranean diet score, % | |||||
Low | 32.8 | 26.2 | 23.9 | 22.8 | 21.2 |
Medium | 44.6 | 46.5 | 47.1 | 47.9 | 49.3 |
High | 22.6 | 27.3 | 28.9 | 29.3 | 29.6 |
Dietary AGE | N Cases | Median Intake | Model 1 | Model 2 | Model 3 |
---|---|---|---|---|---|
CML, mg/day | |||||
Quintile 1 | 1391 | 1.90 | 1.00 (Ref.) | 1.00 (Ref.) | 1.00 (Ref.) |
Quintile 2 | 1259 | 2.41 | 0.93 (0.86–1.00) | 0.94 (0.87–1.02) | 0.98 (0.90–1.06) |
Quintile 3 | 1210 | 2.75 | 0.91 (0.85–0.99) | 0.94 (0.87–1.01) | 0.98 (0.91–1.07) |
Quintile 4 | 1120 | 3.16 | 0.85 (0.79–0.92) | 0.88 (0.81–0.95) | 0.93 (0.86–1.01) |
Quintile 5 | 1182 | 4.02 | 0.83 (0.77–0.90) | 0.87 (0.80–0.94) | 0.92 (0.85–1.00) |
p for trend | <0.001 | <0.001 | 0.023 | ||
per ln(SD) increase | 0.94 (0.91–0.96) | 0.95 (0.92–0.97) | 0.97 (0.94–0.99) | ||
CEL, mg/day | |||||
Quintile 1 | 1214 | 1.37 | 1.00 (Ref.) | 1.00 (Ref.) | 1.00 (Ref.) |
Quintile 2 | 1271 | 1.71 | 1.00 (0.92–1.08) | 1.00 (0.92–1.08) | 1.02 (0.95–1.11) |
Quintile 3 | 1219 | 1.93 | 0.95 (0.88–1.03) | 0.95 (0.88–1.03) | 0.99 (0.91–1.07) |
Quintile 4 | 1268 | 2.21 | 0.99 (0.91–1.07) | 1.00 (0.92–1.08) | 1.04 (0.96–1.13) |
Quintile 5 | 1190 | 2.85 | 0.92 (0.85–1.00) | 0.92 (0.85–1.00) | 0.97 (0.89–1.05) |
p for trend | 0.064 | 0.072 | 0.630 | ||
per ln(SD) increase | 0.97 (0.95–1.00) | 0.97 (0.95–1.00) | 0.99 (0.96–1.01) | ||
MG-H1, mg/day | |||||
Quintile 1 | 1388 | 13.0 | 1.00 (Ref.) | 1.00 (Ref.) | 1.00 (Ref.) |
Quintile 2 | 1250 | 16.7 | 0.94 (0.87–1.01) | 0.94 (0.87–1.02) | 0.98 (0.90–1.06) |
Quintile 3 | 1183 | 19.3 | 0.91 (0.84–0.99) | 0.93 (0.86–1.00) | 0.97 (0.90–1.06) |
Quintile 4 | 1120 | 22.5 | 0.88 (0.81–0.95) | 0.89 (0.82–0.97) | 0.94 (0.87–1.03) |
Quintile 5 | 1221 | 29.9 | 0.84 (0.77–0.90) | 0.86 (0.80–0.94) | 0.92 (0.85–1.00) |
p for trend | <0.001 | <0.001 | 0.033 | ||
per ln(SD) increase | 0.94 (0.92–0.97) | 0.95 (0.93–0.98) | 0.97 (0.95–1.00) |
Median Intake | Colon Cancer | Rectal Cancer | |||||||
---|---|---|---|---|---|---|---|---|---|
All | Proximal Colon | Distal Colon | |||||||
N Cases | HR (95% CI ) | N Cases | HR (95% CI ) | N Cases | HR (95% CI ) | N Cases | HR (95% CI ) | ||
CML, mg/day | |||||||||
Quintile 1 | 1.90 | 873 | 1.00 (Ref.) | 399 | 1.00 (Ref.) | 397 | 1.00 (Ref.) | 518 | 1.00 (Ref.) |
Quintile 2 | 2.41 | 774 | 0.95 (0.86–1.05) | 357 | 0.95 (0.82–1.10) | 317 | 0.87 (0.75–1.02) | 485 | 1.02 (0.90–1.17) |
Quintile 3 | 2.75 | 786 | 1.01 (0.91–1.11) | 366 | 1.01 (0.87–1.17) | 319 | 0.92 (0.79–1.08) | 424 | 0.95 (0.83–1.09) |
Quintile 4 | 3.16 | 759 | 0.99 (0.89–1.09) | 345 | 0.95 (0.82–1.11) | 351 | 1.04 (0.89–1.21) | 361 | 0.81 (0.70–0.94) |
Quintile 5 | 4.02 | 805 | 0.98 (0.89–1.09) | 389 | 0.99 (0.85–1.15) | 342 | 0.97 (0.83–1.13) | 377 | 0.81 (0.70–0.93) |
p for trend | 0.989 | 0.944 | 0.564 | <0.001 | |||||
per ln(SD) increase | 0.99 (0.96–1.02) | 1.00 (0.95–1.05) | 0.99 (0.94–1.04) | 0.93 (0.88–0.97) | |||||
CEL, mg/day | |||||||||
Quintile 1 | 1.37 | 763 | 1.00 (Ref.) | 336 | 1.00 (Ref.) | 357 | 1.00 (Ref.) | 451 | 1.00 (Ref.) |
Quintile 2 | 1.71 | 830 | 1.06 (0.95–1.17) | 380 | 1.10 (0.94–1.27) | 365 | 1.00 (0.86–1.16) | 441 | 0.99 (0.86–1.13) |
Quintile 3 | 1.93 | 789 | 1.01 (0.91–1.12) | 348 | 1.02 (0.87–1.19) | 353 | 0.98 (0.84–1.14) | 430 | 0.94 (0.82–1.08) |
Quintile 4 | 2.21 | 828 | 1.08 (0.97–1.19) | 402 | 1.18 (1.01–1.37) | 323 | 0.92 (0.79–1.07) | 440 | 0.99 (0.86–1.14) |
Quintile 5 | 2.85 | 787 | 1.01 (0.91–1.12) | 390 | 1.12 (0.96–1.31) | 328 | 0.93 (0.79–1.08) | 403 | 0.89 (0.77–1.03) |
p for trend | 0.697 | 0.083 | 0.194 | 0.166 | |||||
per ln(SD) increase | 1.00 (0.97–1.04) | 1.03 (0.99–1.09) | 0.97 (0.92–1.02) | 0.96 (0.92–1.00) | |||||
MG-H1, mg/day | |||||||||
Quintile 1 | 13.0 | 861 | 1.00 (Ref.) | 384 | 1.00 (Ref.) | 386 | 1.00 (Ref.) | 527 | 1.00 (Ref.) |
Quintile 2 | 16.7 | 806 | 1.00 (0.91–1.10) | 367 | 1.02 (0.88–1.19) | 352 | 0.98 (0.84–1.13) | 444 | 0.95 (0.83–1.09) |
Quintile 3 | 19.3 | 770 | 1.01 (0.91–1.11) | 351 | 1.02 (0.87–1.18) | 342 | 1.01 (0.86–1.17) | 413 | 0.93 (0.81–1.07) |
Quintile 4 | 22.5 | 735 | 0.98 (0.89–1.09) | 348 | 1.03 (0.89–1.20) | 306 | 0.92 (0.78–1.08) | 385 | 0.89 (0.77–1.02) |
Quintile 5 | 29.9 | 825 | 0.99 (0.90–1.10) | 406 | 1.06 (0.91–1.23) | 340 | 0.94 (0.81–1.10) | 396 | 0.81 (0.71–0.94) |
p for trend | 0.793 | 0.457 | 0.326 | 0.003 | |||||
per ln(SD) increase | 0.99 (0.96–1.02) | 1.03 (0.98–1.07) | 0.96 (0.92–1.01) | 0.94 (0.90–0.99) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aglago, E.K.; Mayén, A.-L.; Knaze, V.; Freisling, H.; Fedirko, V.; Hughes, D.J.; Jiao, L.; Eriksen, A.K.; Tjønneland, A.; Boutron-Ruault, M.-C.; et al. Dietary Advanced Glycation End-Products and Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients 2021, 13, 3132. https://doi.org/10.3390/nu13093132
Aglago EK, Mayén A-L, Knaze V, Freisling H, Fedirko V, Hughes DJ, Jiao L, Eriksen AK, Tjønneland A, Boutron-Ruault M-C, et al. Dietary Advanced Glycation End-Products and Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients. 2021; 13(9):3132. https://doi.org/10.3390/nu13093132
Chicago/Turabian StyleAglago, Elom K., Ana-Lucia Mayén, Viktoria Knaze, Heinz Freisling, Veronika Fedirko, David J. Hughes, Li Jiao, Anne Kirstine Eriksen, Anne Tjønneland, Marie-Christine Boutron-Ruault, and et al. 2021. "Dietary Advanced Glycation End-Products and Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study" Nutrients 13, no. 9: 3132. https://doi.org/10.3390/nu13093132
APA StyleAglago, E. K., Mayén, A.-L., Knaze, V., Freisling, H., Fedirko, V., Hughes, D. J., Jiao, L., Eriksen, A. K., Tjønneland, A., Boutron-Ruault, M.-C., Rothwell, J. A., Severi, G., Kaaks, R., Katzke, V., Schulze, M. B., Birukov, A., Palli, D., Sieri, S., Santucci de Magistris, M., ... Jenab, M. (2021). Dietary Advanced Glycation End-Products and Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients, 13(9), 3132. https://doi.org/10.3390/nu13093132