Breakfast Consumption Suppresses Appetite but Does Not Increase Daily Energy Intake or Physical Activity Energy Expenditure When Compared with Breakfast Omission in Adolescent Girls Who Habitually Skip Breakfast: A 7-Day Randomised Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Size Calculations
2.3. Preliminary Measurements
2.4. Experimental Design
2.5. Breakfast Interventions
2.6. Physical Activity Energy Expenditure Assessment
2.7. Dietary Assessment
2.8. Perceived Appetite, Tiredness, and Energy Levels
2.9. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Breakfast Meals
3.3. Wake Time and Useable Data
3.4. Physical Activity Energy Expenditure and Duration
3.5. Energy and Macronutrient Intakes
3.6. Perceptions of Appetite, Tiredness, and Energy Levels
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monzani, A.; Ricotti, R.; Caputo, M.; Solito, A.; Archero, F.; Bellone, S.; Prodam, F. A Systematic Review of the association of skipping breakfast with weight and cardiometabolic risk factors in children and adolescents. What should we better investigate in the future? Nutrients 2019, 11, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corder, K.; van Sluijs, E.M.; Ridgway, C.L.; Steele, R.M.; Prynne, C.J.; Stephen, A.M.; Bamber, D.J.; Dunn, V.J.; Goodyer, I.M.; Ekelund, U. Breakfast consumption and physical activity in adolescents: Daily associations and hourly patterns. Am. J. Clin. Nutr. 2014, 99, 361–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corder, K.; van Sluijs, E.M.; Steele, R.M.; Stephen, A.M.; Dunn, V.; Bamber, D.; Goodyer, I.; Griffin, S.J.; Ekelund, U. Breakfast consumption and physical activity in British adolescents. Br. J. Nutr. 2011, 105, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.O. Understanding and addressing the epidemic of obesity: An energy balance perspective. Endocr. Rev. 2006, 27, 750–761. [Google Scholar] [CrossRef] [Green Version]
- Shaibi, G.Q.; Ryder, J.R.; Kim, J.Y.; Barraza, E. Exercise for obese youth: Refocusing attention from weight loss to health gains. Exerc. Sport Sci. Rev. 2015, 43, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.W.; Bohan Brown, M.M.; Allison, D.B. Belief beyond the evidence: Using the proposed effect of breakfast on obesity to show 2 practices that distort scientific evidence. Am. J. Clin. Nutr. 2013, 98, 1298–1308. [Google Scholar] [CrossRef]
- Sievert, K.; Hussain, S.M.; Page, M.J.; Wang, Y.; Hughes, H.J.; Malek, M.; Cicuttini, F.M. Effect of breakfast on weight and energy intake: Systematic review and meta-analysis of randomised controlled trials. BMJ 2019, 364, l42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betts, J.A.; Richardson, J.D.; Chowdhury, E.A.; Holman, G.D.; Tsintzas, K.; Thompson, D. The causal role of breakfast in energy balance and health: A randomized controlled trial in lean adults. Am. J. Clin. Nutr. 2014, 100, 539–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, E.A.; Richardson, J.D.; Holman, G.D.; Tsintzas, K.; Thompson, D.; Betts, J.A. The causal role of breakfast in energy balance and health: A randomized controlled trial in obese adults. Am. J. Clin. Nutr. 2016, 103, 747–756. [Google Scholar] [CrossRef]
- Yoshimura, E.; Hatamoto, Y.; Yonekura, S.; Tanaka, H. Skipping breakfast reduces energy intake and physical activity in healthy women who are habitual breakfast eaters: A randomized crossover trial. Physiol. Behav. 2017, 174, 89–94. [Google Scholar] [CrossRef]
- Halsey, L.G.; Huber, J.W.; Low, T.; Ibeawuchi, C.; Woodruff, P.; Reeves, S. Does consuming breakfast influence activity levels? An experiment into the effect of breakfast consumption on eating habits and energy expenditure. Public Health Nutr. 2012, 15, 238–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeCheminant, G.M.; LeCheminant, J.D.; Tucker, L.A.; Bailey, B.W. A randomized controlled trial to study the effects of breakfast on energy intake, physical activity, and body fat in women who are nonhabitual breakfast eaters. Appetite 2017, 112, 44–51. [Google Scholar] [CrossRef]
- Reeves, S.; Huber, J.W.; Halsey, L.G.; Villegas-Montes, M.; Elgumati, J.; Smith, T. A cross-over experiment to investigate possible mechanisms for lower BMIs in people who habitually eat breakfast. Eur. J. Clin. Nutr. 2015, 69, 632–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metcalf, B.S.; Hosking, J.; Jeffery, A.N.; Henley, W.E.; Wilkin, T.J. Exploring the adolescent fall in physical activity: A 10-yr cohort study (EarlyBird 41]. Med. Sci. Sports Exerc. 2015, 47, 2084–2092. [Google Scholar] [CrossRef] [Green Version]
- The Health and Social Care Information Centre. Health Survey for England—2016. Trend Tables. 2017. Available online: https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/health-survey-for-england-2016 (accessed on 6 July 2021).
- Boisseau, N.; Delamarche, P. Metabolic and hormonal responses to exercise in children and adolescents. Sports Med. 2000, 30, 405–422. [Google Scholar] [CrossRef] [PubMed]
- Goran, M.I.; Gower, B.A. Longitudinal study on pubertal insulin resistance. Diabetes 2001, 50, 2444–2450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogol, A.D.; Clark, P.A.; Roemmich, J.N. Growth and pubertal development in children and adolescents: Effects of diet and physical activity. Am. J. Clin. Nutr 2000, 72, S521–S528. [Google Scholar] [CrossRef]
- Timmons, B.W.; Bar-Or, O.; Riddell, M.C. Oxidation rate of exogenous carbohydrate during exercise is higher in boys than in men. J. Appl. Physiol. 2003, 94, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Timmons, B.W.; Bar-Or, O.; Riddell, M.C. Influence of age and pubertal status on substrate utilization during exercise with and without carbohydrate intake in healthy boys. Appl. Physiol. Nutr. Metab. 2007, 32, 416–425. [Google Scholar] [CrossRef]
- Harrell, J.S.; McMurray, R.G.; Baggett, C.D.; Pennell, M.L.; Pearce, P.F.; Bangdiwala, S.I. Energy costs of physical activities in children and adolescents. Med. Sci. Sports Exerc. 2005, 37, 329–336. [Google Scholar] [CrossRef]
- Leidy, H.J.; Racki, E.M. The addition of a protein-rich breakfast and its effects on acute appetite control and food intake in ‘breakfast-skipping’ adolescents. Int. J. Obes. 2010, 34, 1125–1133. [Google Scholar] [CrossRef] [Green Version]
- Leidy, H.J.; Ortinau, L.C.; Douglas, S.M.; Hoertel, H.A. Beneficial effects of a higher-protein breakfast on the appetitive.; hormonal.; and neural signals controlling energy intake regulation in overweight/obese, “breakfast-skipping”, late-adolescent girls. Am. J. Clin. Nutr. 2013, 97, 677–688. [Google Scholar] [CrossRef]
- Leidy, H.J.; Hoertel, H.A.; Douglas, S.M.; Higgins, K.A.; Shafer, R.S. A high-protein breakfast prevents body fat gain.; through reductions in daily intake and hunger.; in ‘breakfast skipping’ adolescents. Obesity 2015, 23, 1761–1764. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski-Fruer, J.K.; Plekhanova, T.; Mandila, D.; Lekatis, Y.; Tolfrey, K. Effect of breakfast omission and consumption on energy intake and physical activity in adolescent girls: A randomised controlled trial. Br. J. Nutr. 2017, 118, 392–400. [Google Scholar] [CrossRef] [Green Version]
- Zakrzewski-Fruer, J.K.; Wells, E.K.; Crawford, N.S.G.; Afeef, S.M.O.; Tolfrey, K. Physical activity duration but not energy expenditure differs between daily compared with intermittent breakfast consumption in adolescent girls: A randomized crossover trial. J. Nutr. 2018, 148, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Vissers, P.A.; Jones, A.P.; Corder, K.; Jennings, A.; van Sluijs, E.M.; Welch, A.; Cassidy, A.; Griffin, S. Breakfast consumption and daily physical activity in 9–10-year-old British children. Public Health Nutr. 2013, 16, 1281–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakrzewski-Fruer, J.K.; Gillison, F.B.; Katzmarzyk, P.T.; Mire, E.F.; Broyles, S.T.; Champagne, C.M.; Chaput, J.P.; Denstel, K.D.; Fogelholm, M.; Hu, G.; et al. Association between breakfast frequency and physical activity and sedentary time: A cross-sectional study in children from 12 countries. BMC Public Health 2019, 19, 222. [Google Scholar] [CrossRef] [Green Version]
- Kral, T.V.; Whiteford, L.M.; Heo, M.; Faith, M.S. Effects of eating breakfast compared with skipping breakfast on ratings of appetite and intake at subsequent meals in 8- to 10-y-old children. Am. J. Clin. Nutr. 2011, 93, 284–291. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.C.; Gortmaker, S.L.; Sobol, A.M.; Kuntz, K.M. Estimating the energy gap among US children: A counterfactual approach. Pediatrics 2006, 118, e1721–e1733. [Google Scholar] [CrossRef]
- Campbell, N.; Prapavessis, H.; Gray, C.; McGowan, E.; Rush, E.; Maddison, R. The Actiheart in adolescents: A doubly labelled water validation. Pediatr. Exerc. Sci. 2012, 24, 589–602. [Google Scholar] [CrossRef] [PubMed]
- Collings, P.J.; Wijndaele, K.; Corder, K.; Westgate, K.; Ridgway, C.L.; Sharp, S.J.; Dunn, V.; Goodyer, I.; Ekelund, U.; Brage, S. Magnitude and determinants of change in objectively-measured physical activity.; sedentary time and sleep duration from ages 15 to 17.5y in UK adolescents: The ROOTS study. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, H.D.; Jarrett, K.V.; Emmett, P.M.; Rogers, I. Trends in waist circumferences in young British children: A comparative study. Int. J. Obes. 2005, 29, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Brooks-Gunn, J.; Warren, M.P.; Rosso, J.; Gargiulo, J. Validity of self-report measures of girls’ pubertal status. Child. Dev. 1987, 58, 829–841. [Google Scholar] [CrossRef]
- Morris, N.M.; Udry, J.R. Validation of a self-administered instrument to assess stage of adolescent development. J. Youth Adolesc. 1980, 9, 271–280. [Google Scholar] [CrossRef]
- Tanner, J.M. Growth at Adolescents; Blackwell Scientific: Oxford, UK, 1962. [Google Scholar]
- Mellecker, R.R.; McManus, A.M. Measurement of resting energy expenditure in healthy children. J. Parenter. Enteral Nutr. 2009, 33, 640–645. [Google Scholar] [CrossRef]
- Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. J. Physiol. 1949, 109, 1–9. [Google Scholar] [CrossRef]
- Kaiyala, K.J.; Wisse, B.E.; Lighton, J.R.B. Validation of an equation for energy expenditure that does not require the respiratory quotient. PLoS ONE 2019, 14, e0211585. [Google Scholar] [CrossRef] [Green Version]
- Timlin, M.T.; Pereira, M.A. Breakfast frequency and quality in the etiology of adult obesity and chronic diseases. Nutr. Rev. 2007, 65, 268–281. [Google Scholar] [CrossRef]
- O’Neil, C.E.; Byrd-Bredbenner, C.; Hayes, D.; Jana, L.; Klinger, S.E.; Stephenson-Martin, S. The role of breakfast in health: Definition and criteria for a quality breakfast. J. Acad. Nutr. Diet 2014, 114, S8–S26. [Google Scholar] [CrossRef] [PubMed]
- Tolfrey, K.; Zakrzewski, J.K. Breakfast, glycaemic index and health in young people. J. Sport Health Sci. 2012, 1, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.E.; Tucker, K.L. Health benefits of cereal fibre: A review of clinical trials. Nutr. Res. Rev. 2011, 24, 118–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corder, K.; Brage, S.; Wareham, N.J.; Ekelund, U. Comparison of PAEE from combined and separate heart rate and movement models in children. Med. Sci. Sports Exerc. 2005, 37, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Burrows, T.L.; Martin, R.J.; Collins, C.E. A systematic review of the validity of dietary assessment methods in children when compared with the method of doubly labeled water. J. Am. Diet Assoc. 2010, 110, 1501–1510. [Google Scholar] [CrossRef]
- Livingstone, M.B.; Robson, P.J.; Wallace, J.M. Issues in dietary intake assessment of children and adolescents. Br. J. Nutr. 2004, 92 (Suppl. S2), S213–S222. [Google Scholar] [CrossRef] [PubMed]
- Boushey, C.J.; Kerr, D.A.; Wright, J.; Lutes, K.D.; Ebert, D.S.; Delp, E.J. Use of technology in children’s dietary assessment. Eur. J. Clin. Nutr. 2009, 63 (Suppl. S1), S50–S57. [Google Scholar] [CrossRef] [Green Version]
- Thane, C.W.; Stephen, A.M. Day-to-day variation in food and nutrient intakes of British adults. Public Health Nutr. 2006, 7A, 102. [Google Scholar]
- Foster, E.; Hawkins, A.; Adamson, A. Young Person’s Food Atlas—Secondary; Food Standards Agency: London, UK, 2010.
- Foster, E.; Adamson, A.J. Development and validation of the Young Person’s Food Atlas. Proc. Nutr. Soc. 2012, 71, 195. [Google Scholar] [CrossRef] [Green Version]
- Foster, E.; Hawkins, A.; Barton, K.L.; Stamp, E.; Matthews, J.N.S.; Adamson, A.J. Development of food photographs for use with children aged 18 months to 16 years: Comparison against weighed food diaries—The Young Person’s Food Atlas (UK). PLoS ONE 2017, 15, 12. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.A.; Hicks, G.; Nino-Murcia, G. Validity and reliability of a scale to assess fatigue. Psychiatry Res. 1991, 36, 291–298. [Google Scholar] [CrossRef]
- Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, power and validity 496 of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 38–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, B.A.; Sturm, K.; MacIntosh, C.; Feinle, C.; Horowitz, M.; Chapman, I.M. Relation between food intake and visual analogue scale ratings of appetite and other sensations in healthy older and young subjects. Eur. J. Clin. Nutr. 2004, 58, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Rumbold, P.L.; St Clair Gibson, A.; Allsop, S.; Stevenson, E.; Dodd-Reynolds, C.J. Energy intake and appetite following netball exercise over 5 days in trained 13–15 year old girls. Appetite 2011, 56, 621–628. [Google Scholar] [CrossRef]
- Harrington, D.M.; Dowd, K.P.; Bourke, A.K.; Donnelly, A.E. Cross-sectional analysis of levels and patterns of objectively measured sedentary time in adolescent females. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Senn, S. Cross-Over Trials in Clinical Research; Wiley: Chichester, UK, 1993. [Google Scholar]
- Atkinson, G. Analysis of repeated measurements in physical therapy research: Multiple comparisons amongst level means and multifactorial designs. Phys. Ther. Sport 2002, 3, 191–203. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Hopkins, M.; Blundell, J.E. Energy balance, body composition, sedentariness and appetite regulation: Pathways to obesity. Clin. Sci. 2006, 130, 1615–1628. [Google Scholar] [CrossRef]
- Goltz, F.R.; Thackray, A.E.; Atkinson, G.; Lolli, L.; King, J.A.; Dorling, J.L.; Dowejko, M.; Mastana, S.; Stensel, D.J. True interindividual variability exists in postprandial appetite responses in healthy men but is not moderated by the FTO genotype. J. Nutr. 2019, 149, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Thivel, D.; Chaput, J.P. Are post-exercise appetite sensations and energy intake coupled in children and adolescents? Sports Med. 2014, 44, 735–741. [Google Scholar] [CrossRef]
- De Castro, J.M. Prior day’s intake has macronutrient-specific delayed negative feedback effects on the spontaneous food intake of free-living humans. J. Nutr. 1998, 128, 61–67. [Google Scholar] [CrossRef] [Green Version]
PA Analyses Sample (n = 15) | Diet Analyses Sample (n = 11) | VAS Analyses Sample (n = 11) | |
---|---|---|---|
Age (y) | 13.3 ± 0.7 | 13.3 ± 0.8 | 13.3 ± 0.7 |
Stature (m) | 1.58 ± 0.06 | 1.57 ± 0.06 | 1.60 ± 0.06 |
Body mass (kg) | 52.9 ± 7.6 | 53.3 ± 11.0 | 54.5 ± 10.1 |
Body fat % | 26.7 ± 5.5 | 27.0 ± 5.8 | 26.7 ± 5.9 |
Waist circumference (cm) | 69.7 ± 8.5 | 68.3 ± 8.9 | 69.5 ± 9.1 |
BMI (kg∙m−2) | 21.3 ± 3.2 | 21.6 ± 3.8 | 21.3 ± 3.8 |
BMI classification (n NO, OW, OB) 2 | 11, 3, 1 | 8, 2, 1 | 8, 2, 1 |
Breast development (stage) 3 | 4 (0) | 4 (0) | 4 (0) |
Pubic hair (stage) 3 | 4 (0) | 4 (0) | 4 (0) |
RMR (kJ/d) | 6325 ± 1195 | 6172 ± 1420 | 6535 ± 1245 |
Weekdays skip breakfast habitually (d/week) 4 | 4 ± 1 | 4 ± 1 | 4 ± 1 |
Weekend days skip breakfast habitually (d/week) 4 | 1 ± 1 | 1 ± 0 | 1 ± 1 |
Weekly days skip breakfast habitually (d/week) 4 | 5 ± 1 | 5 ± 1 | 5 ± 1 |
Habitual weekday cereal-based breakfast consumption (n) | 5 | 3 | 4 |
Habitual weekend cereal-based breakfast consumption (n) | 5 | 4 | 5 |
Habitual weekday breakfast consumption time (h:min) | 08:16 ± 01:08 | 08:09 ± 00:51 | 08:29 ± 01:25 |
Habitual weekend breakfast consumption time (h:min) | 09:51 ± 01:40 | 09:37 ± 01:36 | 09:15 ± 01:50 |
PA Analyses Sample (n = 15) | Dietary Analyses Sample (n = 11) | VAS Analyses Sample (n = 11) | |
---|---|---|---|
Energy (kJ) | 1578 ± 303 | 1543 ± 355 | 1634 ± 311 |
Carbohydrate (g) | 68.5 ± 18.4 | 63.7 ± 16.5 | 72.5 ± 19.9 |
Fat (g) | 6.4 ± 4.0 | 4.9 ± 1.0 | 6.8 ± 4.5 |
Protein (g) | 13.3 ± 2.6 | 13.2 ± 2.9 | 13.8 ± 2.8 |
Fibre (g) | 8.1 ± 4.7 | 9.3 ± 5.0 | 7.9 ± 4.6 |
BC | BO | 95% CI for BC vs. BO 2 | |||||
---|---|---|---|---|---|---|---|
Wake–10:30 | 10:30–15:30 | 15:30–bed | Wake–10:30 | 10:30–15:30 | 15:30–bed | ||
PAEE (kJ/d) | |||||||
Sedentary | 54 (40–72) | 72 (60–85) | 60 (45––78) | 54 (41–72) | 73 (61–87) | 65 (48–87) | −12–5% |
Light | 321 (233–442) | 342 (286–409) | 260 (194–349) | 321 (238–433) | 369 (309–441) | 264 (191–365) | −12–7% |
Moderate | 168 (84–338) | 228 (142–366) | 152 (79–292) | 192 (99–372) | 257 (160–411) | 148 (73–300) | −24–13% |
Vigorous | 12 (5–35) | 23 (11–47) | 16 (6–41) | 17 (6–44) | 37 (18–76) | 15 (5–41) | −40–4% |
Total | 601 (417–868) | 712 (567–894) | 547 (389–770) | 666 (471–942) | 857 (682–1076) | 550 (379–797) | −18–1% |
PA Duration (min/d) | |||||||
Sedentary | 202 (170–241) | 189 (172–207) | 209 (178–245) | 196 (167–231) | 170 (155–187) | 205 (172–245) | 0–11% |
Light | 67 (49–90) | 74 (64–86) | 59 (45–78) | 67 (50–89) | 81 (70–95) | 62 (46–84) | −13–5% |
Moderate | 15 (7–30) | 19 (12–32) | 13 (7–25) | 17 (9–32) | 22 (13–35) | 13 (6–26) | −23–12% |
Vigorous | 1.44 (0.79–2.63) | 2.14 (1.37–3.34) | 1.93 (1.09–3.42) | 1.73 (0.97–3.08) | 2.95 (1.89–4.61) | 1.78 (0.97–3.27) | −25–2% |
BC | BO | 95% CI for Total in BC vs. BO 2 | 95% CI for Post-10:30 in BC vs. BO 2 | |||||
---|---|---|---|---|---|---|---|---|
Total | 10:30–15:30 | 15:30–Bed | Total | 10:30–15:30 | 15:30–Bed | |||
Energy intake (kJ/d) | 4206 (3157–5604) | 1726 (1041–2863) | 1181 (712–1959) | 4078 (3063–5433) | 2026 (1222–3360) | 1628 (982–2700) | −19–31% | −50–23% |
CHO (g/d) | 118 (82–169) | 42 (24–75) | 37 (20–67) | 127 (88–182) | 69 (39–122) | 46 (26–82) | −32–28% | −54–7% |
Fat (g/d) | 35 (25–49) | 16 (9–28) | 12 (7–21) | 38 (27–53) | 17 (10–29) | 16 (9–27) | −35–33% | −46–38% |
Protein (g/d) | 42 (29–59) | 19 (12–32) | 13 (8–21) | 32 (22–45) | 13 (8–22) | 15 (9–25) | −5–83% | −27–67% |
Fibre (g/d) | 10.0 (7.1–14.2) | 2.1 (1.0–4.3) | 1.1 (0.5–2.3) | 4.7 (3.3–6.7 | 2.7 (1.4–5.1) | 1.4 (0.7–2.7) | 34–236% | −61–55% |
BC | BO | 95% CI for BC vs. BO 2 | |||||
---|---|---|---|---|---|---|---|
Waking | 09:00 | 10:30 | Waking | 09:00 | 10:30 | ||
Hunger | 35 (24–47) | 30 (18–41) | 34 (22–46) | 24 (12–35) | 41 (29–52) | 54 (42–66) | −13.3–0.4 |
Fullness | 46 (31–61) | 56 (41–70) | 53 (38–67) | 54 (40–69) | 43 (29–58) | 33 (18–47) | 0.2–15.9 |
Tiredness | 48 (36–59) | 38 (26–49) | 34 (22–45) | 46 (35–58) | 36 (25–48) | 33 (22–45) | −4.3–6.2 |
Energy | 38 (30–46) | 48 (40–56) | 60 (52–68) | 37 (29–45) | 50 (42–58) | 56 (48–64) | −4.5–6.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakrzewski-Fruer, J.K.; Seall, C.; Tolfrey, K. Breakfast Consumption Suppresses Appetite but Does Not Increase Daily Energy Intake or Physical Activity Energy Expenditure When Compared with Breakfast Omission in Adolescent Girls Who Habitually Skip Breakfast: A 7-Day Randomised Crossover Trial. Nutrients 2021, 13, 4261. https://doi.org/10.3390/nu13124261
Zakrzewski-Fruer JK, Seall C, Tolfrey K. Breakfast Consumption Suppresses Appetite but Does Not Increase Daily Energy Intake or Physical Activity Energy Expenditure When Compared with Breakfast Omission in Adolescent Girls Who Habitually Skip Breakfast: A 7-Day Randomised Crossover Trial. Nutrients. 2021; 13(12):4261. https://doi.org/10.3390/nu13124261
Chicago/Turabian StyleZakrzewski-Fruer, Julia Kirstey, Claire Seall, and Keith Tolfrey. 2021. "Breakfast Consumption Suppresses Appetite but Does Not Increase Daily Energy Intake or Physical Activity Energy Expenditure When Compared with Breakfast Omission in Adolescent Girls Who Habitually Skip Breakfast: A 7-Day Randomised Crossover Trial" Nutrients 13, no. 12: 4261. https://doi.org/10.3390/nu13124261
APA StyleZakrzewski-Fruer, J. K., Seall, C., & Tolfrey, K. (2021). Breakfast Consumption Suppresses Appetite but Does Not Increase Daily Energy Intake or Physical Activity Energy Expenditure When Compared with Breakfast Omission in Adolescent Girls Who Habitually Skip Breakfast: A 7-Day Randomised Crossover Trial. Nutrients, 13(12), 4261. https://doi.org/10.3390/nu13124261