A New Look at the Most Successful Prodrugs for Active Vitamin D (D Hormone): Alfacalcidol and Doxercalciferol
Abstract
:1. Introduction [1,2]
2. Alfacalcidol
2.1. Development of the prodrug alfacalcidol
2.2. Practical synthesis of alfacalcidol
- 1)
- Inexpensive and readily available cholesterol (8) is used as the starting material. If 25-hydroxylated cholesterol is used, basically a similar reaction to give calcitriol would follow, but with much higher costs than alfacalcidol.
- 2)
- 1α-Hydroxylation, which is done in the kidney, is replaced by stereoselective formation of an α-epoxide and subsequent regioselective epoxide cleavage by hydride reduction.
- 3)
- Introducing a biomimetic method, i.e., ultraviolet irradiation and thermal isomerization used to obtain the same reaction in the skin caused by sunlight following the synthesis of the 5,7-diene segment.
3. Doxercalciferol
3.1. Development of the prodrug doxercalciferol
3.2. Practical synthesis of doxercalciferol
4. Conclusions and Future Prospects
Acknowledgements
References and Notes
- DeLuca, H.F. Historical overview. In Vitamin D; Feldman, D., Glorieux, F.H., Pike, J.W., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 3–11. [Google Scholar]
- DeLuca, H.F. Historical perspective. In Vitamin D, 2nd ed.; Feldman, D., Pike, J.W., Glorieux, F.H., Eds.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 3–12. [Google Scholar]
- Laing, C.J.; Cooke, N.E. Vitamin D binding protein. In Vitamin D, 2nd ed.; Feldman, D., Pike, J.W., Glorieux, F.H., Eds.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 117–134. [Google Scholar]
- Horst, R.L.; Reinhardt, T.A.; Reddy, G.S. Vitamin D metabolism. In Vitamin D, 2nd ed.; Feldman, D., Pike, J.W., Glorieux, F.H., Eds.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 15–36. [Google Scholar]
- Pike, J.W.; Shevde, N.K. The vitamin D receptor. In Vitamin D, 2nd ed.; Feldman, D., Pike, J.W., Glorieux, F.H., Eds.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 167–191. [Google Scholar]
- Higuchi, Y.; Sato, K.; Nanjo, M.; Isogai, T.; Takeda, S.; Kumaki, K.; Nishii, Y. 1α-Hydroxycholecalciferol prevents osteoporosis induced by ovariectomy in the rats. Vitamins 1994, 68, 87–93. [Google Scholar]
- Nishii, Y. Active vitamin D and its analogs as drugs for the treatment of osteoporosis: Advantages and problems. J. Bone Miner. Metab. 2002, 20, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, A.; Higashi, S.; Ohkawa, H.; Kubodera, N.; Hirasawa, T.; Ezawa, I.; Ikeda, K.; Ogata, E. The advantage of alfacalcidol over vitamin D in the treatment of osteoporosis. Calcif. Tissue Int. 1999, 65, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, Y.; Higuchi, Y.; Takeda, S.; Masaki, T.; Shira-Ishi, A.; Sato, K.; Kubodera, N.; Ikeda, K.; Ogata, E. ED-71, a vitamin D analog, is a more potent inhibitor of bone resorption than alfacalcidol in an estrogen-deficient rat model of osteoporosis. Bone 2002, 30, 582–588. [Google Scholar] [CrossRef]
- Ikeda, K.; Ogata, E. The effect of vitamin D bon Osteoblasts and Osteoclasts. Curr Opin Orthop 1999, 10, 339–343. [Google Scholar] [CrossRef]
- Okano, T.; Tsugawa, N.; Masuda, S.; Takeuchi, A.; Kobayashi, T.; Takita, Y.; Nishii, Y. Regulatory activities of 2β-(3-hydroxypropoxy)1α,25-dihydroxyvitamin D3, a novel synthetic vitamin D3 derivative, on calcium metabolism. Biochem. Biophy. Res. Commun. 1989, 163, 1444–1449. [Google Scholar] [CrossRef]
- Matsumoto, T.; Miki, T.; Hagino, H.; Sugimoto, T.; Okamoto, S.; Hirota, T.; Tanigawara, Y.; Hayashi, Y.; Fukunaga, M.; Shiraki, M.; Nakamura, T. A new vitamin D, ED-71, increases bone mass in osteoporotic patients under vitamin D supplementation: A randomized, double-blind, placebo-controlled clinical trial. J. Clin. Endocrinol. Metab. 2005, 90, 5031–5036. [Google Scholar] [CrossRef] [PubMed]
- Kubodera, N. Search for and development of active vitamin D3 analogs. Curr. Bioactive Compds. 2006, 2, 301–315. [Google Scholar] [CrossRef]
- Papapoulos, S.E. Bisphosphonates. Pharmacology and use in the treatment of osteoporosis. In Osteoporosis; Marcus, R., Feldman, D., Kelsey, J., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 1209–1234. [Google Scholar]
- Nishii, Y.; Okano, T. History of the development of new vitamin D analogs: Studies on 22-oxacalcitriol (OCT) and 2β-(3-hydroxypropoxy)calcitriol (ED-71). Steroids 2001, 66, 137–146. [Google Scholar] [CrossRef]
- Kawase, A.; Ichikawa, F.; Koike, N.; Kamachi, S.; Stumpf, W.E.; Nishii, Y.; Kubodera, N. Synthesis and pharmacokinetics of 1α-hydroxyvitamin D3 tritiated at 22 and 23 positions showing high specific radioactivity. Chem. Pharm. Bull. 2000, 48, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Kioke, N.; Ichikawa, F.; Nishii, Y.; Stumpf, W.E. Sustained osteoblast nuclear receptor binding of converted 1α,25-dihydroxyvitamin D3, after admiistration of 3H-1α-hydroxyvitamin D3: A combined receptor autoradiography and radioassay time cnourse study with camparison to 3H-1α,25-dihydroxyvitamin D3. Calcif. Tissue Int. 1998, 63, 391–395. [Google Scholar] [CrossRef]
- Kubodera, N. Search for and development of active vitamin D3 analogues. J. Syn. Org. Chem. Jpn. 2005, 63, 728–738, and internal information at Chugai Pharmaceutical Co., Ltd. [Google Scholar] [CrossRef]
- Kubodera, N.; Miyamoto, K.; Watanabe, H.; Kato, M.; Sasahara, K.; Ochi, K. An improved procedure for retro-cycloaddition of adducts from steroidal 5,7-dienes and 4-phenyl-1,2,4-triazoline-3,5-dione. J. Org. Chem. 1992, 57, 5019–5020. [Google Scholar] [CrossRef]
- Watanabe, H.; Kawanishi, T.; Miyamoto, K.; Kubodera, N.; Sasahara, K.; Ochi, K. Novel procedure for the preparation of 1α,3β-dihydroxy-2β-tritiated steroidal compounds. Steroids 1992, 57, 444–446. [Google Scholar] [CrossRef]
- Abe, E.; Miyaura, C.; Sakagami, H.; Takeda, M.; Konno, K.; Yamazaki, T.; Yoshiki, S.; Suda, T. Differentiation of mouse myeloid leukemia cells induced by 1α,25-dihydroxyvitamin D3. Proc. Natl. Acad. Sci. USA 1981, 78, 4990–4994. [Google Scholar] [CrossRef] [PubMed]
- Bouillon, R.; Okamura, W.H.; Norman, A.W. Structure-function relationships in the vitamin D endocrine system. Endocrine Rev. 1995, 16, 200–257. [Google Scholar]
- Posner, G.H.; Kahraman, M. Overview: Rational design of 1α,25-dihydroxyvitamin D3 analogs (deltanoids). In Vitamin D, 2nd ed.; Feldman, D., Pike, J.W., Glorieux, F.H., Eds.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 1405–1422. [Google Scholar]
- Sjoden, G.; Smith, C.; Lindgren, U.; DeLuca, H.F. 1α-Hydroxyvitamin D2 is less toxic than 1α-hydroxyvitamin D3 in rat. Proc. Soc. Exp. Biol. Med. 1985, 178, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.J.; Dusso, A.S.; Slatopolsky, E. Vitamin D analogues for secondary hyperparathyroidism. Nephrol. Dial. Transplant 2002, 17, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Suda, T.; DeLuca, H.F.; Schnoes, H.K.; Blunt, J.W. The isolation and identification of 25-hydroxyergocalciferol. Biochemistry 1969, 8, 3515–3520. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Schnoes, H.K.; Levan, L.; DeLuca, H.F. Isolation and identification of 24-hydroxyvitamin D2 and 24,25-dihydroxyvitamin D2. Arch. Biochem. Biophys. 1980, 202, 450–457. [Google Scholar] [CrossRef]
- Jones, G.; Schnoes, H.K.; DeLuca, H.F. Isolation and identification of 1,25-dihydroxyvitamin D2. Biochemistry 1975, 14, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Koszewski, N.J.; Reinhardt, T.A.; Napoli, J.L.; Beitz, D.C.; Horst, R.L. 24,26-Dihydroxyvitamin D2: A unique physiological metabolite of vitamin D2. Biochemistry 1988, 27, 5785–5790. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Rosenthal, A.; Segev, D.; Mazur, Y.; Frolow, F.; Halfon, Y.; Rabinovich, D.; Shakked, Z. Isolation and identification of 24,25-dihydroxyvitamin D2 using the perfused rat kidney. Biochemistry 1979, 18, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.S.; Tserng, K.-Y. Isolation and identification of 1,24,25-trihydroxyvitamin D2, 1,24,25,28-tetrahydroxyvitamin D2, and 1,24,25.26-tetrahydroxyvitamin D2: New metabolites of 1,25-dihydroxyvitamin D2 produced in rat kidney. Biochemistry 1986, 25, 5328–5336. [Google Scholar] [CrossRef] [PubMed]
- Horst, R.L.; Reinhardt, T.A.; Ramberg, C.F.; Koszewski, N.J.; Napoli, J.L. 24-Hydroxylation of 1,25-dihydroxyergocalciferol. J. Biol. Chem. 1986, 261, 9250–9256. [Google Scholar] [PubMed]
- Tan, A.U., Jr.; Levine, B.S.; Mazess, R.B.; Kyllo, D.M.; Bishop, C.W.; Knutson, J.C.; Kleinman, K.S.; Coburn, J.W. Effective suppression of parathyroid hormone by 1α-hydroxyvitamin D2 in hemodialysis patients with moderate to severe secondary hyperparathyroidism. Kidney Int. 1997, 51, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Lm, H.-Y.; Schnoes, H.K.; DeLuca, H.F. Synthesis of 1α-hydroxyergocalciferol. Steroids 1977, 30, 671–677. [Google Scholar] [CrossRef]
- Shepherd, D.A.; Donia, R.A.; Campbell, J.A.; Johnson, B.A.; Holysz, R.P.; Slomp, G., Jr.; Stafford, J.E.; Pederson, R.L.; Ott, A.C. A synthesis of progesterone from ergosterol. J. Amer. Chem. Soc. 1955, 77, 1212–1215. [Google Scholar] [CrossRef]
- Kubodera, N. Pharmaceutical studies on vitamin D derivatives and practical synthesis of six commercially available vitamin D derivatives that contribute to current clinical practice. Heterocycles 2009, in press. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kubodera, N. A New Look at the Most Successful Prodrugs for Active Vitamin D (D Hormone): Alfacalcidol and Doxercalciferol. Molecules 2009, 14, 3869-3880. https://doi.org/10.3390/molecules14103869
Kubodera N. A New Look at the Most Successful Prodrugs for Active Vitamin D (D Hormone): Alfacalcidol and Doxercalciferol. Molecules. 2009; 14(10):3869-3880. https://doi.org/10.3390/molecules14103869
Chicago/Turabian StyleKubodera, Noboru. 2009. "A New Look at the Most Successful Prodrugs for Active Vitamin D (D Hormone): Alfacalcidol and Doxercalciferol" Molecules 14, no. 10: 3869-3880. https://doi.org/10.3390/molecules14103869
APA StyleKubodera, N. (2009). A New Look at the Most Successful Prodrugs for Active Vitamin D (D Hormone): Alfacalcidol and Doxercalciferol. Molecules, 14(10), 3869-3880. https://doi.org/10.3390/molecules14103869