Synthesis and Biological Evaluation of Novel 1-Alkyltryptophan Analogs as Potential Antitumor Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological activity evaluation
3. Experimental
3.1. General
3.2. Synthesis of tryptophan anologs
3.3. Sample preparation and optical rotation measurements
3.4. Cell lines and culture conditions
3.5. MTT assay
3.6. Statistical analysis
4. Conclusions
Acknowledgements
References and Notes
- Penedo, L.A.; Oliveira-Silva, P.; Gonzalez, E.M.; Maciel, R.; Jurgilas, P.B.; Melibeu Ada, C.; Campello-Costa, P.; Serfaty, C.A. Nutritional tryptophan restriction impairs plasticity of retinotectal axons during the critical period. Exp. Neurol. 2009, 217, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Isselbacher, K.J. Sugar and amino acid transport by cells in culture-differences between normal and malignant cells. N. Engl. J. Med. 1972, 286, 929–933. [Google Scholar] [PubMed]
- Petersen, J.L.; Hickman-Miller, H.D.; McIlhaney, M.M.; Vargas, S.E.; Purcell, A.W.; Hildebrand, W.H.; Solheim, J.C. A charged amino acid residue in the transmembrane/cytoplasmic region of tapasin influences MHC class I assembly and maturation. J. Immunol. 2005, 174, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Cui, D.; Bao, F.; Hu, Z.; Qin, Z.; Hu, Y. Tryptophan deficiency affects organ growth by retarding cell expansion in Arabidopsis. Plant J. 2009, 57, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Sibilia, V.; Pagani, F.; Lattuada, N.; Greco, A.; Guidobono, F. Linking chronic tryptophan deficiency with impaired bone metabolism and reduced bone accrual in growing rats. J. Cell Biochem. 2009, 107, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.B.; Muller, A.J.; Prendergast, G.C. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol. Rev. 2008, 222, 206–221. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Ohnishi, A.; Promsuk, J.; Shimizu, S.; Kanai, Y.; Shiokawa, Y.; Nagane, M. Enhanced tumor growth elicited by L-type amino acid transporter 1 in human malignant glioma cells. Neurosurgery 2008, 62, 493–503, discussion 503–504. [Google Scholar] [CrossRef] [PubMed]
- Shennan, D.B.; Thomson, J.; Barber, M.C.; Travers, M.T. Functional and molecular characteristics of system L in human breast cancer cells. Biochim. Biophys. Acta 2003, 1611, 81–90. [Google Scholar] [CrossRef]
- Taylor, M.W.; Feng, G.S. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991, 5, 2516–2522. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.Y.; Muller, A.J.; Sharma, M.D.; DuHadaway, J.; Banerjee, T.; Johnson, M.; Mellor, A.L.; Prendergast, G.C.; Munn, D.H. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res. 2007, 67, 792–801. [Google Scholar] [CrossRef] [PubMed]
- Sundin, A.; Garske, U.; Orlefors, H. Nuclear imaging of neuroendocrine tumours. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.R.; Mohr, D.; Stocker, R. Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes. J. Biol. Chem. 1994, 269, 14457–14464. [Google Scholar] [PubMed]
- Marchand, P.; Le Borgne, M.; Na, Y.M.; Pagniez, F.; Abdala, H.; Le Baut, G.; Le Pape, P. Synthesis and antileishmanial activity of 3-(alpha-azolylbenzyl)indoles. J. Enzyme Inhib. Med. Chem. 2002, 17, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.R.; Cho, C.W.; Krische, M.J. Hydrogen-mediated reductive coupling of conjugated alkynes with ethyl (N-Sulfinyl)iminoacetates: synthesis of unnatural alpha-amino acids via rhodium-catalyzed C-C bond forming hydrogenation. J. Am. Chem. Soc. 2005, 127, 11269–11276. [Google Scholar] [CrossRef] [PubMed]
- Harding, W.W.; Hodge, M.; Wang, Z.; Woolverton, W.L.; Parrish, D.; Deschamps, J.R.; Prisinzano, T.E. Enantioselective synthesis of (2R,3R)- and (2S,3S)-2- [(3-chlorophenyl)-(2-methoxyphenoxy)methyl]morpholine. Tetrahedron Asymmetry 2005, 16, 2249–2256. [Google Scholar] [CrossRef] [PubMed]
- Kundrat, M.D.; Autschbach, J. Computational modeling of the optical rotation of amino acids: A new look at an old rule for pH dependence of optical rotation. J. Am. Chem. Soc. 2008, 130, 4404–4414. [Google Scholar] [CrossRef] [PubMed]
- Munn, D.H.; Mellor, A.L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Invest. 2007, 117, 1147–1154. [Google Scholar] [CrossRef] [PubMed]
- Inaba, T.; Ino, K.; Kajiyama, H.; Yamamoto, E.; Shibata, K.; Nawa, A.; Nagasaka, T.; Akimoto, H.; Takikawa, O.; Kikkawa, F. Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecol. Oncol. 2009, 115, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Giese, C.; Lepthien, S.; Metzner, L.; Brandsch, M.; Budisa, N.; Lilie, H. Intracellular uptake and inhibitory activity of aromatic fluorinated amino acids in human breast cancer cells. ChemMedChem 2008, 3, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Katayama, H.; Brinkley, W.R.; Sen, S. The Aurora kinases: Role in cell transformation and tumorigenesis. Cancer Metastasis Rev. 2003, 22, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, C.; Muzik, O.; Lu, X.; Jahania, M.S.; Soubani, A.O.; Khalaf, M.; Peng, F.; Mangner, T.J.; Chakraborty, P.K.; Chugani, D.C. Quantification of tryptophan transport and metabolism in lung tumors using PET. J. Nucl. Med. 2009, 50, 356–363. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Compounds | C | [α]DT (T=20 °C; c=1) | ||
---|---|---|---|---|
g/100mL | in H2O | in 1 M HCl | in 1 M NaOH | |
1-ET | 0.19 | 0 | +5.8 | +14 |
1-PT | 0.17 | -2.5 | +8.8 | +17.7 |
1-isoPT | 0.14 | -2.8 | +5.7 | +10.0 |
1-BT | 0.14 | 0 | +10.0 | +18.7 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sun, T.; Li, Z.-L.; Tian, H.; Wang, S.-C.; Cai, J. Synthesis and Biological Evaluation of Novel 1-Alkyltryptophan Analogs as Potential Antitumor Agents. Molecules 2009, 14, 5339-5348. https://doi.org/10.3390/molecules14125339
Sun T, Li Z-L, Tian H, Wang S-C, Cai J. Synthesis and Biological Evaluation of Novel 1-Alkyltryptophan Analogs as Potential Antitumor Agents. Molecules. 2009; 14(12):5339-5348. https://doi.org/10.3390/molecules14125339
Chicago/Turabian StyleSun, Ting, Zhao-Long Li, Hua Tian, Shih-Chen Wang, and Jiong Cai. 2009. "Synthesis and Biological Evaluation of Novel 1-Alkyltryptophan Analogs as Potential Antitumor Agents" Molecules 14, no. 12: 5339-5348. https://doi.org/10.3390/molecules14125339
APA StyleSun, T., Li, Z. -L., Tian, H., Wang, S. -C., & Cai, J. (2009). Synthesis and Biological Evaluation of Novel 1-Alkyltryptophan Analogs as Potential Antitumor Agents. Molecules, 14(12), 5339-5348. https://doi.org/10.3390/molecules14125339