Chemical Composition and Antimicrobial Activity of the Essential Oils from Three Chemotypes of Origanum vulgare L. ssp. hirtum (Link) Ietswaart Growing Wild in Campania (Southern Italy)
Abstract
:Introduction
Results and Discussion
Chemical composition of the essential oils
Antimicrobial activity
Experimental
Plant material
Oil extraction
Gas Chromatography
Gas Chromatography - Mass Spectrometry
Antibacterial activity
Conclusions
Acknowledgements
References
- Lawrence, B.M. The botanical and chemical aspects of Oregano. Perfum. Flavor. 1984, 9, 41–51. [Google Scholar]
- Russo, M.; Galletti, G.C.; Bocchini, P.; Carnacini, A. Essential oil chemical composition of wild populations of Italian oregano spice (Origanum vulgare ssp. hirtum (Link) Ietswaart): A preliminary evaluation of their use in chemotaxonomy by cluster analysis. 1. Inflorescences. J Agric. Food Chem. 1998, 46, 3741–3746. [Google Scholar]
- Bocchini, P.; Russo, M.; Galletti, G.C. Pyrolysis-Gas Chromatography/MassSpectrometry used as a microanalytical technique for the characterization of Origanum heracleoticum from Calabria, Southern Italy. Rapid Commun. Mass Spectrom. 1998, 12, 1555–1563. [Google Scholar] [CrossRef]
- Skoula, M.; Gotsiou, P.; Naxakis, G.; Johnson, C.B. A chemosystematic investigation on the mono- and sesquiterpenoids in the genus Origanum (Labiatae). Phytochemistry 1999, 52, 649–657. [Google Scholar] [CrossRef]
- Maarse, H.; Van Os, F.H.L. Volatile oil of Origanum vulgare L. ssp. vulgare. I. Qualitative composition of the oil. Flavour Ind. 1973, 4, 477–481. [Google Scholar]
- Maarse, H.; Van Os, F.H.L. Volatile oil of Origanum vulgare L. ssp. vulgare. II. Quantitative composition of the oil. Flavour Ind. 1973, 4, 481–484. [Google Scholar]
- Maarse, H. Volatile oil of Origanum vulgare L. ssp. vulgare. III. Changes in composition during maturation. Flavour Ind. 1974, 4, 278–281. [Google Scholar]
- Başer, K.H.C.; Özek, T.; Tümen, G.; Sezik, E. Composition essential oil of Turkish Origanum species with commercial importance. J. Essent. Oil Res. 1993, 5, 619–623. [Google Scholar] [CrossRef]
- Fleisher, A.; Sneer, N. Oregano species and Origanum chemotypes. J. Sci. Food Agric. 1982, 33, 441–446. [Google Scholar] [CrossRef]
- Lawrence, B.M. Origanum oil (Greek type). Perfum. Flavor. 1989, 14, 38–40. [Google Scholar]
- Sezik, E.; Tümen, G.; Kirimer, N.; Özek, T.; Başer, K.H.C. Essential oil composition of four Origanum vulgare subspecies of Anatolian origin. J. Essent. Oil Res. 1993, 5, 425–431. [Google Scholar] [CrossRef]
- Başer, K.H.C; Özek, T.; Kürkcüoglu, M.; Tümen, G. The essential oil of Origanum vulgare subsp. hirtum of Turkish origin. J. Essent. Oil Res. 1994, 6, 31–36. [Google Scholar]
- Tucker, A.O.; Maciarello, M.J. Oregano: botany and chemistry. In Spices, Herbs and Edible Fungi; Charalambous, G., Ed.; Elsevier Science B.V: Amsterdam, The Netherlands, 1994; pp. 439–456. [Google Scholar]
- Melegari, M.; Severi, F.; Bertoldi, M.; Benvenuti, S.; Circetta, G.; Morone Fortunato, I.; Bianchi, A.; Leto, C.; Carubba, A. Chemical characterization of essential oils of some Origanum vulgare L. sub-species of various origin. Riv. Ital. EPPOS 1995, 16, 21–28. [Google Scholar]
- Vokou, D.; Kokkini, S.; Bessière, J.M. Geographic variation of Greek oregano (Origanum vulgare ssp. hirtum) essential oils. Biochem. Syst. Ecol. 1993, 21, 287–295. [Google Scholar] [CrossRef]
- Kokkini, S.; Karousou, R.; Dardioti, A.; Krigas, N.; Lanaras, T. Autumn essential oils of greek oregano. Phytochemistry 1997, 44, 883–886. [Google Scholar] [CrossRef]
- Senatore, F. Influence of harvesting time on yield and composition of the essential oil of a Thyme (Thymus pulegioides L.) Growing Wild in Campania (Southern Italy). J. Agric. Food Chem. 1996, 44, 1327–1332. [Google Scholar] [CrossRef]
- De Feo, V.; Bruno, M.; Tahiri, B.; Napolitano, F.; Senatore, F. Chemical composition and antibacterial activity of essential oils from Thymus spinulosus Ten. (Lamiaceae). J. Agric. Food Chem. 2003, 51, 3849–3853. [Google Scholar] [CrossRef] [PubMed]
- Formisano, C.; Senatore, F.; Bruno, M.; Bellone, G. Chemical composition and antimicrobial activity of the essential oil of Phlomis ferruginea Ten. (Lamiaceae) growing wild in Southern Italy. Flavour Frag. J. 2006, 21, 848–851. [Google Scholar] [CrossRef]
- Basile, A.; Senatore, F.; Gargano, R.; Sorbo, S.; Del Pezzo, M.; Lavitola, A.; Ritieni, A.; Bruno, M.; Spatuzzi, D.; Rigano, D.; Vuotto, M.L. Antibacterial and antioxidant activities in Sideritis italica (Miller) Greuter et Burdet essential oils. J. Ethnopharmacol. 2006, 107, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Riela, S.; Bruno, M.; Formisano, C.; Rigano, D.; Rosselli, S.; Saladino, M.L.; Senatore, F. Effects of solvent-free microwave extraction on the chemical composition of essential oil of Calamintha nepeta (L.) Savi compared with the conventional production method. J. Sep. Sci. 2008, 31, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Konakchiev, A.; Genova, E.; Couladis, M. Chemical composition of the essential oil of Origanum vulgare ssp. hirtum (Link) Ietswaart in Bulgaria. C. R. Acad. Bulg. Sci. 2004, 57, 49–52. [Google Scholar]
- Poulose, A.J.; Croteau, R. Biosynthesis of aromatic monoterpenes. Conversion of γ-terpinene to p-cymene and thymol in Thymus vulgaris L. Arch. Biochem. Biophys. 1978, 187, 307–314. [Google Scholar] [CrossRef]
- Werker, L.; Putievsky, E.; Ravid, U. The essential oils and glandular hairs in different chemotypes of Origanum vulgare L. Ann. Bot. 1985, 55, 793–801. [Google Scholar] [CrossRef]
- Putievsky, E.; Ravid, U.; Dudai, N. Phenological and seasonal influences on essential oil of a cultivated clone of Origanum vulgare L. J. Sci Food Agric. 1988, 43, 225–228. [Google Scholar] [CrossRef]
- Jerković, I.; Mastelić, J.; Milos, M. The impact of both the season of collection and drying on the volatile constituents of Origanum vulgare L. ssp. hirtum grown wild in Croatia. Int. J. Food Sci. Technol. 2001, 36, 649–654. [Google Scholar]
- Pérez, R.A.; Navarro, T.; de Lorenzo, C. HS–SPME analysis of the volatile compounds from spices as a source of flavour in ‘Campo Real’ table olive preparations. Flavour Frag. J. 2007, 22, 265–273. [Google Scholar] [CrossRef]
- D'Antuono, F.L.; Galletti, G.C.; Bocchini, P. Variability of essential oil content and composition of Origanum vulgare L. populations from a north mediterranean area (Liguria Region, Northern Italy). Ann. Bot. 2000, 86, 471–478. [Google Scholar] [CrossRef]
- Mockute, D.; Bernotiene, G.; Judzentiene, A. The essential oil of Origanum vulgare L. ssp. vulgare growing wild in Vilnius district (Lithuania). Phytochemistry 2001, 57, 65–69. [Google Scholar] [CrossRef]
- Panizzi, L.; Flamini, G.; Cioni, P.L.; Morelli, I. Composition and antimicrobial properties of essential oils of four Mediterranean Lamiaceae. J. Ethnopharmacol. 1993, 39, 167–170. [Google Scholar] [CrossRef]
- Sivropoulou, A.; Papanikolaou, E.; Nikolaou, C.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antimicrobial and cytotoxic activities of Origanum essential oils. J. Agric. Food Chem. 1996, 44, 1202–1205. [Google Scholar] [CrossRef]
- Aligiannis, N.; Kalpoutzakis, E.; Mitaku, S.; Chinou, I.B. Composition and antimicrobial activity of the essential oils two Origanum species. J. Agric. Food Chem. 2001, 49, 4168–4170. [Google Scholar] [CrossRef] [PubMed]
- Baydar, H.; Sagdic, O.; Ozkan, G.; Karadogan, T. Antibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in Turkey. Food Control 2004, 15, 169–172. [Google Scholar] [CrossRef]
- Loźienė, K.; Venskutonis, P.R.; Šipailienė, A.; Labokas, J. Radical scavenging and antibacterial properties of the extracts from different Thymus pulegioides L. chemotypes. Food Chem. 2007, 103, 546–559. [Google Scholar] [CrossRef]
- Ipek, E.; Zeytinoglu, H.; Okay, S.; Tuylu, B.A.; Kürkcüoglu, M.; Başer, K.H.C. Genotoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella/microsomal test. Food Chem. 2005, 93, 551–556. [Google Scholar] [CrossRef]
- Mazzanti, G.; Battinelli, L.; Salvatore, G. Antimicrobial properties of the linalol -rich essential oil of Hyssopus officinalis L. var decumbens (Lamiaceae). Flavour Frag. J. 1998, 13, 289–294. [Google Scholar] [CrossRef]
- Sokovic, M.; van Griensven, L.J.L.D. Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. Eur. J. Plant Pathol. 2006, 116, 211–224. [Google Scholar] [CrossRef]
- Alviano, W.S.; Mendonca-Filho, R.R.; Alviano, D.S.; Bizzo, H.R.; Souto-Padron, T.; Rodrigues, M.L.; Bolognese, A.M.; Alviano, C.S.; Souza, M.M.G. Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. Oral Microbiol. Immun. 2005, 20, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Jirovetz, L.; Buchbauer, G.; Denkova, Z.; Stoyanova, A.; Murgov, I.; Schmidt, E.; Geissler, M. Antimicrobial testings and gas chromatographic analysis of pure oxygenated monoterpenes 1,8-cineole, α-terpineol, terpinen-4-ol and camphor as well as target compounds in essential oils of pine (Pinus pinaster), rosemary (Rosmarinus officinalis), tea tree (Melaleuca alternifolia). Sci. Pharm. 2005, 73, 27–39. [Google Scholar]
- Lai, K.P.; Ye, Y.Q.; Wie, Z.M.; Wang, G.Y.; Yang, H.Q. Study on antimicrobial activities of α-(L)- terpineol against plant pathogens. Huagong Jishu Yu Kaifa 2007, 36, 5–7, via Chem.Abs.148:511007, 2008. [Google Scholar]
- Queiroga, C.L.; Teixeira Duarte, M.C.; Baesa Ribeiro, B.; Melillo de Magalhaes, P. Linalool production from the leaves of Bursera aloexylon and its antimicrobial activity. Fitoterapia 2007, 78, 327–328. [Google Scholar] [CrossRef] [PubMed]
- Kamatou, G.P.P.; Viljoen, A.M. Linalool-a review of a biologically active compound of commercial importance. Nat. Prod. Commun. 2008, 3, 1183–1192. [Google Scholar]
- Oyedemi, S.O.; Okoh, A.I.; Mabinya, L.V.; Pirochenva, G.; Afolayan, A.J. The proposed mechanism of bactericidal action of eugenol, α-terpineol and γ-terpinene against Listeria monocytogenes, Streptococcus pyogenes, Proteus vulgaris and Escherichia coli. Afr. J. Biotechnol. 2009, 8, 1280–1286. [Google Scholar]
- Formisano, C.; Rigano, D.; Senatore, F.; Al-Hillo, M.R.Y.; Piozzi, F.; Rosselli, S. Analysis of essential oil from Teucrium maghrebinum Greuter et Burdet growing wild in Algeria. Nat. Prod. Commun. 2009, 4, 411–414. [Google Scholar] [PubMed]
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavour and Fragrance Volatiles by Glass Capillary Gas Chromatography; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. J. Chromatogr. 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Barry, A. The Antimicrobic Susceptibility Test: Principles and Practices; Lea and Febiger: Philadelphia, PA, USA, 1976. [Google Scholar]
- Bonsignore, L.; Loy, G.; Secci, D.; Delogu, A.; Palmieri, G. A preliminary microbiological screening of Sardinian pants. Fitoterapia 1990, 61, 339–341. [Google Scholar]
- Koneman, E.W.; Allen, S.D.; Janda, W.M.; Schreckenberg, P.C.; Winn, W.C. Color Atlas and Textbook of Diagnostic Microbiology; Lippincott-Raven: Philadlphia, PA, USA, 1997; pp. 784–785. [Google Scholar]
- Burt, S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Sahin, F.; Güllüce, M.; Daferera, D.; Sökmen, A.; Sökmen, M.; Polissiou, M.; Agar, G.; Özer, H. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control 2004, 15, 549–557. [Google Scholar] [CrossRef]
- Valero, M.; Giner, M.J. Effects of antimicrobial components of essential oils on growth of Bacillus cereus INRA L2104 in and the sensory qualities of carrot broth. Int. J. Food Microbiol. 2006, 106, 90–94. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the essential oils are available from the authors. |
Kia | Kib | Compound | Identificationc | Fd | Sd | SGd |
---|---|---|---|---|---|---|
925 | 1013 | Tricyclene | LRI, MS | 0.29±0.02 | 0.20±0.01 | 0.10±0.01 |
928 | 1035 | α-Thujene | LRI, MS | 0.11±0.01 | 0.28±0.01 | 0.21±0.01 |
938 | 1075 | α-Pinene | LRI, MS, Co-GC | 0.19±0.03 | 0.42±0.01 | 0.19±0.02 |
945 | 1056 | Camphene | LRI, MS, Co-GC | 0.50±0.02 | t | 0.22±0.01 |
973 | 1132 | Sabinene | LRI, MS, Co-GC | 0.20±0.01 | 0.28±0.04 | 0.88±0.03 |
978 | 1118 | β-Pinene | LRI, MS, Co-GC | 0.11±0.01 | 0.32±0.03 | 0.40±0.01 |
980 | 1154 | 1-Octen-3-ol | LRI, MS | 0.30±0.04 | 0.30±0.01 | |
983 | 1253 | Octan-3-one | LRI, MS | t | 0.10±0.01 | |
993 | 1173 | Myrcene | LRI, MS, Co-GC | 0.70±0.09 | 0.90±0.06 | 2.80±0.20 |
1001 | 1146 | δ2-Carene | LRI, MS | 0.11±0.01 | 0.30±0.02 | 0.22±0.01 |
1005 | 1150 | α-Phellandrene | LRI, MS, Co-GC | 0.29±0.02 | 0.50±0.03 | 0.08±0.00 |
1008 | 1160 | δ3-Carene | LRI, MS | 0.27±0.02 | 1.10±0.10 | 0.19±0.02 |
1013 | 1189 | α-Terpinene | LRI, MS, Co-GC | 0.33±0.03 | 0.50±0.03 | 0.41±0.03 |
1025 | 1278 | p-Cymene | LRI, MS, Co-GC | 2.81±0.20 | 1.25±0.3 | 2.01±0.10 |
1029 | 1218 | β-Phellandrene | LRI, MS, Co-GC | 0.19±0.02 | 0.15±0.00 | 0.09±0.01 |
1030 | 1205 | Limonene | LRI, MS, Co-GC | 0.27±0.01 | 1.21±0.3 | 2.36±0.20 |
1034 | 1213 | 1,8-Cineole | LRI, MS, Co-GC | 0.50±0.03 | 0.50±0.04 | 0.60±0.03 |
1038 | 1243 | (Z)-β-Ocimene | LRI, MS | 0.83±0.04 | 0.69±0.01 | 4.64±0.40 |
1049 | 1262 | (E)-β-Ocimene | LRI, MS | 0.22±0.01 | 1.71±0.30 | 4.10±0.20 |
1057 | 1256 | γ-Terpinene | LRI, MS, Co-GC | 2.38±0.40 | 4.59±0.80 | 4.90±0.10 |
1086 | 1265 | Terpinolene | LRI, MS | 1.80±0.5 | 1.20±0.1 | 0.50±0.03 |
1097 | 1553 | Linalool | LRI, MS, Co-GC | 2.87±0.30 | 4.10±0.2 | 12.50±0.7 |
1128 | 1638 | cis-p-Menth-2-en-1-ol | LRI, MS | 0.13±0.01 | t | |
1167 | 1718 | Borneol | LRI, MS, Co-GC | 0.33±0.01 | 0.29±0.02 | t |
1176 | 1611 | Terpinen-4-ol | LRI, MS | 1.07±0.20 | 0.41±0.01 | 0.80±0.01 |
1189 | 1706 | α-Terpineol | LRI, MS | 0.22±0.03 | 15.10±0.6 | 3.90±0.10 |
1239 | 1607 | Thymol methyl ether | RI, MS, Co-GC | 3.81±0.60 | 2.27±0.20 | 1.11±0.10 |
1245 | 1975 | Carvacrol methyl ether | LRI, MS | 1.19±0.40 | 4.63±0.10 | 0.79±0.03 |
1259 | 1665 | Linalyl acetate | LRI, MS, Co-GC | 0.48±0.04 | 1.20±0.1 | 15.90±0.5 |
1293 | 2198 | Thymol | LRI, MS, Co-GC | 18.21±0.80 | 26.75±0.70 | 3.24±0.30 |
1299 | 2239 | Carvacrol | LRI, MS, Co-GC | 21.89±0.70 | 6.45±0.65 | 0.46±0.02 |
1348 | 1466 | α-Cubebene | RI, MS | 0.20±0.01 | 0.10±0.01 | 0.10±0.00 |
1353 | 2186 | Eugenol | RI, MS, Co-GC | 0.20±0.02 | ||
1356 | 1868 | Thymyl acetate | LRI, MS | 0.14±0.01 | 0.31±0.00 | 0.49±0.01 |
1367 | 1890 | Carvacryl acetate | LRI, MS | 0.26±0.02 | 0.09±0.02 | 0.21±0.02 |
1372 | 1493 | α-Ylangene | LRI, MS | 0.27±0.01 | t | |
1377 | 1497 | α-Copaene | LRI, MS | 0.29±0.03 | 0.15±0.01 | |
1382 | 1549 | β-Cubebene | LRI, MS | 0.21±0.04 | 0.25±0.02 | 0.10±0.02 |
1385 | 1535 | β-Bourbonene | LRI, MS | 0.33±0.05 | 0.20±0.01 | 0.60±0.01 |
1387 | 1600 | β-Elemene | LRI, MS | 0.10±0.01 | 0.10±0.00 | 0.20±0.00 |
1415 | 1612 | (E)-β-Caryophyllene | LRI, MS | 3.72±0.51 | 2.11±0.10 | 4.29±0.3 |
1432 | 1612 | β-Gurjunene | LRI, MS | 0.27±0.02 | 0.09±0.01 | 0.19±0.01 |
1432 | 1650 | γ-Elemene | LRI, MS | 0.29±0.03 | 0.22±0.02 | 0.15±0.01 |
1437 | 1628 | Aromadendrene | LRI, MS | 0.21±0.00 | 0.19±0.02 | |
1455 | 1689 | α-Humulene | LRI, MS | 1.71±0.20 | 1.48±0.20 | 1.35±0.20 |
1463 | 1662 | allo-Aromadendrene | LRI, MS | 0.19±0.03 | 0.11±0.00 | 0.50±0.04 |
1477 | 1726 | Germacrene D | LRI, MS | 0.13±0.00 | 0.41±0.02 | 2.11±0.30 |
1478 | 1704 | γ-Muurolene | LRI, MS | 4.48±0.58 | 2.59±0.20 | 3.61±0.20 |
1492 | 1756 | Bicyclogermacrene | LRI, MS | 0.35±0.06 | 0.13±0.03 | |
1494 | 1740 | Valencene | LRI, MS | 0.25±0.05 | 0.17±0.02 | t |
1503 | 1740 | α-Muurolene | LRI, MS | 0.22±0.01 | 0.20±0.01 | 0.39±0.01 |
1510 | 1743 | β-Bisabolene | LRI, MS | 4.13±0.42 | 2.81±0.20 | 2.51±0.20 |
1515 | 1776 | γ-Cadinene | LRI, MS | 0.81±0.06 | 0.29±0.01 | 0.35±0.01 |
1526 | 1773 | δ-Cadinene | LRI, MS | 3.17±0.51 | 0.99±0.1 | 2.09±0.30 |
1532 | 1745 | α-Cadinene | LRI, MS | 0.18±0.01 | t | 0.21±0.00 |
1544 | 1854 | Germacrene B | LRI, MS | 0.09±0.01 | 0.11±0.01 | 0.15±0.01 |
1565 | 2057 | Ledol | LRI, MS | t | t | 0.10±0.00 |
1577 | 1250 | Spathulenol | LRI, MS | 3.90±0.40 | 1.20±0.20 | 1.20±0.01 |
1579 | 2008 | Caryophyllene oxide | LRI, MS | 1.01±0.09 | 0.60±0.04 | 1.20±0.1 |
1636 | 2183 | γ-Eudesmol | LRI, MS | 0.21±0.03 | 0.14±0.00 | 0.38±0.03 |
1640 | 2158 | t-Cadinol | LRI, MS | 2.10±0.50 | 0.15±0.00 | 0.19±0.02 |
1642 | 2209 | t-Muurolol | LRI, MS | t | 0.05±0.01 | 1.51±0.20 |
1652 | 2235 | α-Cadinol | LRI, MS | 1.69±0.09 | 1.06±0.2 | 4.02±0.3 |
1668 | 2219 | α-Bisabolol | LRI, MS | 0.19±0.01 | t | |
TOTAL | 93.90 | 94.00 | 91.80 |
Bacterial strain | F MIC MBC | S MIC MBC | SG MIC MBC | G |
---|---|---|---|---|
Bacillus cereus ATCC 11778 | 50 50 | 50 50 | 50 100 | 1.56 |
Bacillus subtilis ATCC 6633 | 50 50 | 50 100 | 50 100 | 1.56 |
Staphylococcus aureus ATCC 2592 | 50 50 | 50 50 | 100 | 3.12 |
Staphylococcus epidermidis ATCC 12228 | 25 25 | 25 50 | 50 100 | 6.25 |
Streptococcus faecalis ATTC 29212 | 50 100 | 50 100 | 100 100 | >100 |
Escherichia coli ATCC 25922 | 50 100 | 100 100 | 100 100 | 3.12 |
Proteus mirabilis ATCC 25933 | 100 100 | 100 100 | >100 | 100 |
Proteus vulgaris ATCC 13315 | 100 >100 | 100 100 | >100 | 100 |
Pseudomonas aeruginosa ATCC 27853 | >100 | >100 | >100 | 12.5 |
Salmonella typhi Ty2 ATCC 19430 | 100 100 | 100 100 | >100 | >100 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
De Martino, L.; De Feo, V.; Formisano, C.; Mignola, E.; Senatore, F. Chemical Composition and Antimicrobial Activity of the Essential Oils from Three Chemotypes of Origanum vulgare L. ssp. hirtum (Link) Ietswaart Growing Wild in Campania (Southern Italy). Molecules 2009, 14, 2735-2746. https://doi.org/10.3390/molecules14082735
De Martino L, De Feo V, Formisano C, Mignola E, Senatore F. Chemical Composition and Antimicrobial Activity of the Essential Oils from Three Chemotypes of Origanum vulgare L. ssp. hirtum (Link) Ietswaart Growing Wild in Campania (Southern Italy). Molecules. 2009; 14(8):2735-2746. https://doi.org/10.3390/molecules14082735
Chicago/Turabian StyleDe Martino, Laura, Vincenzo De Feo, Carmen Formisano, Enrico Mignola, and Felice Senatore. 2009. "Chemical Composition and Antimicrobial Activity of the Essential Oils from Three Chemotypes of Origanum vulgare L. ssp. hirtum (Link) Ietswaart Growing Wild in Campania (Southern Italy)" Molecules 14, no. 8: 2735-2746. https://doi.org/10.3390/molecules14082735