Solid State Polyselenides and Polytellurides: A Large Variety of Se–Se and Te–Te Interactions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular units in polyselenides and polytellurides
2.1.1. Oligomeric Qn2– motifs
2.1.2. Oligomeric Qn4– motifs
2.2. Infinite motifs in polyselenides and polytellurides
2.2.1. One-dimensional motifs: chains
2.2.2. One-dimensional motifs: Ribbons
2.2.3. Two-dimensional motifs: Layers
2.2.4. Two-dimensional motifs: Chains connected to layers
2.2.5. Two-dimensional motifs: oligomeric units connected to layers
2.2.6. Three-dimensional motifs
3. Conclusions
Acknowledgements
References and Notes
- Kosbar, L.L.; Murray, C.E.; Copel, M.; Afzali, A.; Mitzi, D.B. High-mobility ultrathin semiconducting films prepared by spin coating. Nature 2004, 428, 299–303. [Google Scholar]
- Lange, S.; Nilges, T. Ag10Te4Br3: A new silver(I) (poly)chalcogenide halide solid electrolyte. Chem. Mater. 2006, 18, 2538–2544. [Google Scholar] [CrossRef]
- Zheng, N.; Bu, X.; Feng, P. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity. Nature 2003, 426, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Atwood, G. Phase-change materials for electronic memories. Science 2008, 321, 210–211. [Google Scholar] [CrossRef] [PubMed]
- Lencer, D.; Salinga, M.; Grabowski, B.; Hickel, T.; Neugebauer, J.; Wuttig, M. A map for phase-change materials. Nat. Mater. 2008, 7, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N.; Wuttig, M. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832. [Google Scholar]
- Zakery, A.; Elliott, S.R. Optical properties and applications of chalcogenide glasses: A review. J. Non-Cryst. Sol. 2003, 330, 1–12. [Google Scholar] [CrossRef]
- Lowhorn, N.D.; Tritt, T.M.; Abbott, E.E.; Kolis, J.W. Enhancement of the power factor of the transition metal pentatelluride HfTe5 by rare-earth doping. Appl. Phys. Lett. 2006, 88, 022101:1–022101:3. [Google Scholar] [CrossRef]
- Rowe, D.M. Thermoelectrics Handbook: Macro to Nano; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Sootsman, J.R.; Kong, H.; Uher, C.; D’Angelo, J.J.; Wu, C.-I.; Hogan, T.P.; Caillat, T.; Kanatzidis, M.G. Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. Angew. Chem. Int. Ed. 2008, 47, 8618–8622. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Kleinke, K.M.; Holgate, T.; Zhang, H.; Su, Z.; Tritt, T.M.; Kleinke, H. Thermoelectric performance of NiyMo3Sb7-xTex (y ≤ 0.1, 1.5 ≤ x ≤ 1.7). J. Appl. Phys. 2009, 105, 053703:1–053703:5. [Google Scholar] [CrossRef]
- Böttcher, P.; Getzschmann, J.; Keller, R. Zur Kenntnis der Dialkalimetalldichalkogenide β-Na2S2, K2S2, α-Rb2S2, β-Rb2S2, K2Se2, Rb2Se2, α-K2Te2, β-K2Te2 und Rb2Te2. Z. Anorg. Allg. Chem. 1993, 619, 476–478. [Google Scholar] [CrossRef]
- Schäfer, H.; Eisenmann, B.; Müller, W. Zintl Phases: Transitions between metallic and ionic bonding. Angew. Chem. Int. Ed. Engl. 1973, 12, 694–712. [Google Scholar] [CrossRef]
- Nesper, R. Zintl-phases containing Li. Prog. Solid State Chem. 1990, 20, 1–45. [Google Scholar] [CrossRef]
- Kauzlarich, S.M. Chemistry, Structure, and Bonding of Zintl Phases and Ions; VCH: New York, NY, USA, 1996. [Google Scholar]
- Siegel, S.G. Crystallographic studies of XeF2 and XeF4. J. Am. Chem. Soc. 1963, 85, 240–240. [Google Scholar] [CrossRef]
- Curnow, O.J. A Simple qualitative molecular-orbital/valence-bond description for the bonding in main group "hypervalent" molecules. J. Chem. Educ. 1998, 75, 910–915. [Google Scholar] [CrossRef]
- Papoian, G. A.; Hoffmann, R. Hypervalent bonding in one, two, and three dimensions: Extending the Zintl-Klemm concept to nonclassical electron-rich networks. Angew. Chem. Int. Ed. 2000, 39, 2408–2448. [Google Scholar] [CrossRef]
- Böttcher, P. Tellurium-Rich Tellurides. Angew. Chem. Int. Ed. Engl. 1988, 27, 759–772. [Google Scholar] [CrossRef]
- Patschke, R.; Kanatzidis, M.G. Polytelluride compounds containing distorted nets of tellurium. Phys. Chem. Chem. Phys. 2002, 4, 3266–3281. [Google Scholar] [CrossRef]
- Xu, J.; Kleinke, H. Unusual Sb–Sb bonding in high temperature thermoelectric materials. J. Comput. Chem. 2008, 29, 2134–2143. [Google Scholar] [CrossRef] [PubMed]
- Kanatzidis, M.G. From cyclo-Te8 to Texn- Sheets: Are Nonclassical Polytellurides More Classical than We Thought? Angew. Chem. Int. Ed. Engl. 1995, 34, 2109–2111. [Google Scholar] [CrossRef]
- Böttcher, P.; Doert, T. Chalcogen-rich chalcogenides: from the first ideas to a still growing field of research. Phosphorus, Sulfur, Silicon 1998, 136-138, 255–282. [Google Scholar] [CrossRef]
- Smith, D.M.; Ibers, J.A. Syntheses and solid-state structural chemistry of polytelluride anions. Coord. Chem. Rev. 2000, 200-202, 187–205. [Google Scholar] [CrossRef]
- Föppl, H.; Busmann, E.; Frorath, F.K. Die Kristallstrukturen von α-Na2S2 und K2S2, β-Na2S2 und Na2Se2. Z. Anorg. Allg. Chem. 1962, 314, 12–29. [Google Scholar] [CrossRef]
- Batchelor, R.J.; Einstein, F.W.B.; Gay, I.D.; Jones, C.H.W.; Sharma, R.D. Syntheses and solid-state NMR of tetrabutylammonium hydrogen telluride, tetramethylammonium hydrogen selenide and bis(tetramethylammonium) ditelluride and x-ray crystal structures of Me4NSeH and (Me4N)2Te2. Inorg. Chem. 1993, 32, 4378–4383. [Google Scholar] [CrossRef]
- Thiele, K.-H.; Steinicke, A.; Dümichen, U.; Neumüller, B. Darstellung und Reaktionen von Natriumtellurid, Na2Te - Kristallstruktur von [Na(CH3OH)3]2Te2. Z. Anorg. Allg. Chem. 1996, 622, 231–234. [Google Scholar] [CrossRef]
- Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, USA, 1948. [Google Scholar]
- Böttcher, P. Die Kristallstruktur von K2S3 und K2Se3. Z. Anorg. Allg. Chem. 1977, 432, 167–172. [Google Scholar] [CrossRef]
- Assoud, A.; Soheilnia, N.; Kleinke, H. Band gap tuning in new strontium seleno-stannates. Chem. Mater. 2004, 16, 2215–2221. [Google Scholar] [CrossRef]
- Assoud, A.; Soheilnia, N.; Kleinke, H. The new semiconducting polychalcogenide Ba2SnSe5 exhibiting Se32- units and distorted SnSe6 octahedra. J. Solid State Chem. 2005, 178, 1087–1093. [Google Scholar] [CrossRef]
- Eisenmann, B.; Schäfer, H. K2Te3: The first binary alkali-metal polytelluride with Te32- ions. Angew. Chem. Int. Ed. Engl. 1978, 17, 684. [Google Scholar] [CrossRef]
- Cui, Y.; Assoud, A.; Xu, J.; Kleinke, H. Structures and Physical Properties of new Semiconducting gold and copper polytellurides: Ba7Au2Te14 and Ba6.76Cu2.42Te14. Inorg. Chem. 2007, 46, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Getzschmann, J.R.; Rönsch, E.; Böttcher, P. Crystal structure of dinatriumtetraselenide, Na2Se4. Z. Kristallogr. -NCS 1997, 212, 87. [Google Scholar]
- Huffman, J.C.; Haushalter, R.C. Preparation and crystal structure of (Ph4P)2Te4·2CH3OH. Z. Anorg. Allg. Chem. 1984, 518, 203–209. [Google Scholar] [CrossRef]
- Müller, V.; Frenzen, G.; Dehnicke, K.; Fenske, D. Synthese, FIR-Spektren und Kristallstrukturen der Pentaselenide K2Se5 und (Na(15-Krone-5))2Se5. Z. Naturforsch. B 1992, 47, 205–210. [Google Scholar] [CrossRef]
- Weller, F.; Adel, J.; Dehnicke, K. Polyselenide mit langkettigen Tetraalkylammoniumionen. Die Kristallstruktur von Trimethyl-tetradecyl-ammonium-hexaselenid. Z. Anorg. Allg. Chem. 1987, 548, 125–132. [Google Scholar] [CrossRef]
- Warren, C.J.; Haushalter, R.C.; Bocarsly, A.B. Electrochemical synthesis of a pseudo-two-dimensional polytelluride containing Te122- anions: Structure of [(C2H5)4N]2Te12. J. Alloys Compd. 1996, 233, 23–29. [Google Scholar] [CrossRef]
- Sheldrick, W.S.; Wachhold, M. Synthesis and structure of Cs2Te13 and Cs4Te28, tellurium-rich tellurides on the methanolothermal route to Cs3Te22. Chem. Commun. 1996, 607–608. [Google Scholar] [CrossRef]
- Assoud, A.; Xu, J.; Kleinke, H. Structures and physical properties of new semiconducting polyselenides Ba2CuδAg4-δSe5 with unprecedented linear Se34- units. Inorg. Chem. 2007, 46, 9906–9911. [Google Scholar] [CrossRef] [PubMed]
- Dürichen, P.; Bolte, M.; Bensch, W. Synthesis, crystal structure, and properties of polymeric Rb12Nb6Se35, a novel ternary niobium selenide consisting of infinite anionic chains built up by Nb2Se11 units containing an uncommon Se34--fragment. J. Solid State Chem. 1998, 140, 97–102. [Google Scholar] [CrossRef]
- Tasman, H.A.; Boswijk, K.H. Reinvestigation of the crystal structure of CsI3. Acta Crystallogr. 1955, 8, 59–60. [Google Scholar] [CrossRef]
- Mooney-Slater, R.C.L. The triiodide ion in tetraphenylarsonium triiodide. Acta Crystallogr. 1959, 12, 187–196. [Google Scholar] [CrossRef]
- Rundle, R.E. On the Problem Structure of XeF4 and XeF2. J. Am. Chem. Soc. 1963, 85, 112–113. [Google Scholar] [CrossRef]
- Cordier, G.; Schäfer, H.; Stelter, M. Darstellung und Struktur der Verbindung Ca14AlSb11. Z. Anorg. Allg. Chem. 1984, 519, 183–188. [Google Scholar] [CrossRef]
- Kim, H.; Olmstead, M.M.; Klavins, P.; Webb, D.J.; Kauzlarich, S.M. Structure, magnetism, and colossal magnetoresistance (CMR) of the ternary transition metal solid solution Ca14-xEuxMnSb11 (0 < x <14). Chem. Mater. 2002, 14, 3382–3390. [Google Scholar]
- Brown, S.R.; Kauzlarich, S.M.; Gascoin, F.; Snyder, G.J. Yb14MnSb11: New high efficiency thermoelectric material for power generation. Chem. Mater. 2006, 18, 1873–1877. [Google Scholar] [CrossRef]
- Lu, Y.; Ibers, J.A. Synthesis and characterization of the new quaternary one-dimensional chain materials, potassium copper niobium selenides, K2CuNbSe4 and K3CuNb2Se12. Inorg. Chem. 1991, 30, 3317–3320. [Google Scholar] [CrossRef]
- Sunshine, S.A.; Ibers, J.A. Redetermination of the structures of CuTaS3 and Nb2Se9. Acta Crystallogr. C 1987, 43, 1019–1022. [Google Scholar] [CrossRef]
- Böttcher, P.; Keller, R. The crystal structure of NaTe and its relationship to tellurium-rich tellurides. J. Less-Common Met. 1985, 109, 311–321. [Google Scholar] [CrossRef]
- Assoud, A.; Derakhshan, S.; Soheilnia, N.; Kleinke, H. Electronic structure and physical properties of the semiconducting polytelluride Ba2SnTe5 with a unique Te54- unit. Chem. Mater. 2004, 16, 4193–4198. [Google Scholar] [CrossRef]
- Apblett, A.; Grein, F.; Johnson, J.P.; Passmore, J.; White, P.S. Preparation and X-ray crystal structure of [I5+][AsF6-], an electronic structure of the I5+ cation. Inorg. Chem. 1986, 25, 422–426. [Google Scholar] [CrossRef]
- McConnachie, J.M.; Ansari, M.A.; Bollinger, J.C.; Salm, R.J.; Ibers, J.A. Synthesis and structural characterization of the telluroargentate [PPh4]2[NEt4][AgTe7] and telluromercurate [PPh4]2[HgTe7] compounds containing the unprecedented η3-Te74- polytelluride anion. Inorg. Chem. 1993, 32, 3201–3202. [Google Scholar] [CrossRef]
- Smith, D.M.; Roof, L.C.; Ansari, M.A.; McConnachie, J.M.; Bollinger, J.C.; Pell, M.A.; Salm, R.J.; Ibers, J.A. Synthesis, reactivity, and structural characterization of the nonclassical [MTe7]n- Anions (M = Ag, Au, n = 3; M = Hg, n = 2). Inorg. Chem. 1996, 35, 4999–5006. [Google Scholar] [CrossRef] [PubMed]
- Eisenmann, B.; Schwerer, H.; Schäfer, H. Plane, zu Ketten verknüpfte Te56--Anionen im K2SnTe5. Mat. Res. Bull. 1983, 18, 383–387. [Google Scholar] [CrossRef]
- Bernstein, J.; Hoffmann, R. Hypervalent Tellurium in One-Dimensional Extended Structures Containing Te5n- Units. Inorg. Chem. 1985, 24, 4100–4108. [Google Scholar] [CrossRef]
- Harbrecht, B.; Selmer, A. Rhenium selenide tellurides Re2SexTe5-x: The structure of Re6Se8Te7. Z. Anorg. Allg. Chem. 1994, 620, 1861–1866. [Google Scholar] [CrossRef]
- Anderko, K.; Schubert, K. Untersuchungen im System Kupfer-Tellur. Z. Metallk. 1954, 45, 371–378. [Google Scholar]
- Klein-Haneveld, A.J.; Jellinek, F. The crystal structure of stoichiometric uranium ditelluride. J. Less-Common Met. 1970, 21, 45–49. [Google Scholar] [CrossRef]
- Schewe-Miller, I.; Böttcher, P. Ternäre Telluride mit W5Si3-Typ-Struktur: MxK4Te3 (M=Ca, Sr). J. Alloys Compd. 1992, 183, 98–108. [Google Scholar] [CrossRef]
- Peierls, R.E. Quantum Theory of Solids; Clarendon Press: Oxford, UK, 1955. [Google Scholar]
- Schewe-Miller, I.; Böttcher, P. Synthesis and crystal structures of K5Se3, Cs5Te3 and Cs2Te. Z. Kristallogr. 1991, 196, 137–151. [Google Scholar] [CrossRef]
- Schewe-Miller, I.; Böttcher, P. Darstellung und Kristallstruktur des K5Te3. Z. Naturforsch. B 1990, 45, 417–422. [Google Scholar] [CrossRef]
- Stöwe, K. The Phase Transition of TlTe: Crystal Structure. J. Solid State Chem. 2000, 149, 123–132. [Google Scholar] [CrossRef]
- Doert, T.; Cardoso Gil, R.H.; Böttcher, P. The crystal structure of Tl2Te3 - a reinvestigation. Z. Anorg. Allg. Chem. 1999, 625, 2160–2163. [Google Scholar] [CrossRef]
- Valentine, D.Y.; Cavin, O.B.; Yakel, H.L., Jr. On the crystal structure of LiTe3. Acta Crystallogr. B 1977, 33, 1389–1396. [Google Scholar] [CrossRef]
- Bradley, A.J. The crystal structure of Te. Philos. Mag. 1924, 48, 477–496. [Google Scholar] [CrossRef]
- Böttcher, P.; Kretschmann, U. Darstellung und Kristallstruktur von Dicaesiumpentatellurid Cs2Te5. Z. Anorg. Allg. Chem. 1982, 491, 39–46. [Google Scholar] [CrossRef]
- Böttcher, P.; Kretschmann, U. Darstellung und Kristallstruktur von Dirubidiumpentatellurid, Rb2Te5. J. Less-Common Met. 1983, 95, 81–91. [Google Scholar] [CrossRef]
- Sutherland, H.H.; Hogg, J.H.C.; Walton, P.D. Indium polytelluride In2Te5. Acta Crystallogr. B 1976, 32, 2539–2541. [Google Scholar] [CrossRef]
- Ienco, A.; Proserpio, D. M.; Hoffmann, R. Main group element nets to a T. Inorg. Chem. 2004, 43, 2526–2540. [Google Scholar] [CrossRef] [PubMed]
- Böhm, H.; von Schnering, H.G. The modulated structure of niobium tetratelluride NbTe4. Z. Kristallogr. 1985, 171, 41–64. [Google Scholar]
- Assoud, A.; Kleinke, K.M.; Soheilnia, N.; Kleinke, H. T-shaped nets of Sb atoms in the binary antimonide Hf5Sb9. Angew. Chem. Int. Ed. 2004, 43, 5260–5262. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Kleinke, K.M.; Kleinke, H. electronic structure and physical properties of Hf5Sb9 containing a unique T net of Sb atoms. Z. Anorg. Allg. Chem. 2008, 634, 2367–2372. [Google Scholar] [CrossRef]
- Böttcher, P.; Kretschmann, U. Darstellung und Kristallstruktur von CsTe4. Z. Anorg. Allg. Chem. 1985, 523, 145–152. [Google Scholar] [CrossRef]
- Sheldrick, W.S.; Wachhold, M. Discrete crown-shaped Te8 rings in Cs3Te22. Angew. Chem. Int. Ed. Engl. 1995, 34, 450–451. [Google Scholar] [CrossRef]
- Liu, Q.; Goldberg, N.; Hoffmann, R. A 2,3-connected tellurium net and the Cs3Te22 phase. Chem. Eur. J. 1996, 2, 390–7. [Google Scholar] [CrossRef]
- Stöwe, K. Contributions to the crystal chemistry of uranium tellurides. III. Temperature-dependent structural investigations on uranium ditelluride. J. Solid State Chem. 1996, 127, 202–210. [Google Scholar] [CrossRef]
- Stöwe, K. Beiträge zur Kristallchemie der Urantelluride. II. Die Kristallstruktur des Diuranpentatellurids U2Te5. Z. Anorg. Allg. Chem. 1996, 622, 1423–1427. [Google Scholar] [CrossRef]
- Stöwe, K. Beiträge zur Kristallchemie der Urantelluride. I. Die Kristallstruktur des α-Urantritellurids. Z. Anorg. Allg. Chem. 1996, 622, 1419–1422. [Google Scholar] [CrossRef]
- Krönert, W.; Plieth, K. Die Struktur des Zirkontriselenids ZrSe3. Z. Anorg. Allg. Chem. 1965, 336, 207–218. [Google Scholar] [CrossRef]
- Felser, C.; Finckh, E.W.; Kleinke, H.; Rocker, F.; Tremel, W. Electronic properties of ZrTe3. J. Mater. Chem. 1998, 8, 1787–1798. [Google Scholar] [CrossRef]
- Noel, H. Crystal structure of the low-dimensional uranium pentatulluride: UTe5. Inorg. Chim. Acta 1985, 109, 205–207. [Google Scholar] [CrossRef]
- Patschke, R.; Heising, J.; Schindler, J. L.; Kannewurf, C. R.; Kanatzidis, M. Site occupancy wave and unprecedented infinite zigzag (Te22-)n chains in the flat Te nets of the new ternary rare earth telluride family. J. Solid State Chem. 1998, 135, 111–115. [Google Scholar] [CrossRef]
- Fokwa, B.P.T.; Doert, T. The ternary rare-earth polychalcogenides LaSeTe2, CeSeTe2, PrSeTe2, NdSeTe2, and SmSeTe2: Syntheses, crystal structures, electronic properties, and charge-density-wave-transitions. Solid State Sci. 2005, 7, 573–587. [Google Scholar] [CrossRef]
- Getzschmann, J.; Böttcher, P.; Kaluza, W. Darstellung und Kristallstrukturen von β-Rb2Te2 und Cs2Te2 sowie die Verfeinerung der Strukturen von Ca2P2 und Sr2As2. Z. Kristallogr. 1996, 211, 90–95. [Google Scholar] [CrossRef]
- Dürichen, P.; Bensch, W. Cesium gadolinium tetratelluride. Acta Crystallogr. C 1997, 53, 267–269. [Google Scholar]
- Stöwe, K. Syntheses and crystal structures of KPrTe4, KGdTe4 and RbGdTe4. Solid State Sci. 2003, 5, 765–769. [Google Scholar] [CrossRef]
- Sheldrick, W.S.; Schaaf, B. RbTe6, ein Polytellurid mit Schichtstruktur [Te6-]. Z. Naturforsch. B 1994, 49, 993–996. [Google Scholar] [CrossRef]
- Klepp, K.O.; Ipser, H. CrTe3 - A novel transition-Metal polytelluride. Angew. Chem. Int. Ed. Engl. 1982, 21, 911. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Graf, C.; Assoud, A.; Mayasree, O.; Kleinke, H. Solid State Polyselenides and Polytellurides: A Large Variety of Se–Se and Te–Te Interactions. Molecules 2009, 14, 3115-3131. https://doi.org/10.3390/molecules14093115
Graf C, Assoud A, Mayasree O, Kleinke H. Solid State Polyselenides and Polytellurides: A Large Variety of Se–Se and Te–Te Interactions. Molecules. 2009; 14(9):3115-3131. https://doi.org/10.3390/molecules14093115
Chicago/Turabian StyleGraf, Christian, Abdeljalil Assoud, Oottil Mayasree, and Holger Kleinke. 2009. "Solid State Polyselenides and Polytellurides: A Large Variety of Se–Se and Te–Te Interactions" Molecules 14, no. 9: 3115-3131. https://doi.org/10.3390/molecules14093115
APA StyleGraf, C., Assoud, A., Mayasree, O., & Kleinke, H. (2009). Solid State Polyselenides and Polytellurides: A Large Variety of Se–Se and Te–Te Interactions. Molecules, 14(9), 3115-3131. https://doi.org/10.3390/molecules14093115