Upgrading SELEX Technology by Using Lambda Exonuclease Digestion for Single-Stranded DNA Generation
Abstract
:Introduction
Results and Discussion
Detection of biotinylated DNA strand after strand separation with streptavidin-coated magnetic beads and alkaline denaturation
Detection of phosphorylated DNA strand after lambda exonuclease digestion
Experimental
ssDNA library and primers
PCR
PCR for generation of phosphate labeled dsDNA
PCR for generation of biotin labeled dsDNA
ssDNA generation
Strand separation with streptavidin-coated magnetic beads and alkaline denaturation
Lambda exonuclease digestion
Detection of phosphorylated DNA strand after lambda exonuclease digestion
Non-radioactive Southern Blotting
Detection of biotinylated DNA strand after strand separation with streptavidin-coated magnetic beads and alkaline denaturation
Modified Western blot
Conclusions
- Samples Availability: Not Available.
References
- Bock, L.C.; Griffin, L.C.; Latham, J.A.; Vermaas, E.H.; Toole, J.J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992, 355, 564–566. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 1992, 355, 850–852. [Google Scholar] [CrossRef]
- Mayer, G.; Hover, T. In vitro selection of ssDNA aptamers using biotinylated target proteins. Methods Mol. Biol. 2009, 535, 19–32. [Google Scholar] [CrossRef]
- Raddatz, M.S.; Dolf, A.; Endl, E.; Knolle, P.; Famulok, M.; Mayer, G. Enrichment of cell-targeting and population-specific aptamers by fluorescence-activated cell sorting. Angew. Chem. Int. Ed. Engl. 2008, 47, 5190–5193. [Google Scholar]
- Tang, K.; Fu, D.J.; Julien, D.; Braun, A.; Cantor, C.R.; Koster, H. Chip-based genotyping by mass spectrometry. Proc. Natl. Acad. Sci. USA 1999, 96, 10016–10020. [Google Scholar] [CrossRef]
- Groth, M.; Huse, K.; Reichwald, K.; Taudien, S.; Hampe, J.; Rosenstiel, P.; Birkenmeier, G.; Schreiber, S.; Platzer, M. Method for preparing single-stranded DNA templates for Pyrosequencing using vector ligation and universal biotinylated primers. Anal. Biochem. 2006, 356, 194–201. [Google Scholar] [CrossRef]
- Kuypers, A.W.; Linssen, P.C.; Willems, P.M.; Mensink, E.J. On-line melting of double-stranded DNA for analysis of single-stranded DNA using capillary electrophoresis. J. Chromatogr. B Biomed. Appl. 1996, 675, 205–211. [Google Scholar] [CrossRef]
- Erdogan, F.; Kirchner, R.; Mann, W.; Ropers, H.H.; Nuber, U.A. Detection of mitochondrial single nucleotide polymorphisms using a primer elongation reaction on oligonucleotide microarrays. Nucleic Acids Res. 2001, 29, E36. [Google Scholar] [CrossRef]
- Hultman, T.; Stahl, S.; Hornes, E.; Uhlen, M. Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support. Nucleic Acids Res. 1989, 17, 4937–4946. [Google Scholar] [CrossRef]
- Stahl, S.; Hultman, T.; Olsson, A.; Moks, T.; Uhlen, M. Solid phase DNA sequencing using the biotin-avidin system. Nucleic Acids Res. 1988, 16, 3025–3038. [Google Scholar] [CrossRef]
- Fitzwater, T.; Polisky, B. A SELEX primer. Methods Enzymol. 1996, 267, 275–301. [Google Scholar] [CrossRef]
- Pagratis, N.C. Rapid preparation of single stranded DNA from PCR products by streptavidin induced electrophoretic mobility shift. Nucleic Acids Res. 1996, 24, 3645–3646. [Google Scholar] [CrossRef]
- Stoltenburg, R.; Reinemann, C.; Strehlitz, B. FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal. Bioanal. Chem. 2005, 383, 83–91. [Google Scholar] [CrossRef]
- Williams, K.P.; Bartel, D.P. PCR product with strands of unequal length. Nucleic Acids Res. 1995, 23, 4220–4221. [Google Scholar] [CrossRef]
- Gyllensten, U.B.; Erlich, H.A. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc. Natl. Acad. Sci. USA 1988, 85, 7652–7656. [Google Scholar] [CrossRef]
- Wu, L.; Curran, J.F. An allosteric synthetic DNA. Nucleic Acids Res. 1999, 27, 1512–1516. [Google Scholar] [CrossRef]
- Higuchi, R.G.; Ochman, H. Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Res. 1989, 17, 5865. [Google Scholar] [CrossRef]
- Jones, L.A.; Clancy, L.E.; Rawlinson, W.D.; White, P.A. High-affinity aptamers to subtype 3a hepatitis C virus polymerase display genotypic specificity. Antimicrob. Agents Chemother. 2006, 50, 3019–3027. [Google Scholar] [CrossRef]
- Espelund, M.; Stacy, R.A.; Jakobsen, K.S. A simple method for generating single-stranded DNA probes labeled to high activities. Nucleic Acids Res. 1990, 18, 6157–6158. [Google Scholar] [CrossRef]
- Paul, A.; Avci-Adali, M.; Ziemer, G.; Wendel, H.P. Streptavidin-coated magnetic beads for DNA strand separation implicate a multitude of problems during cell-SELEX. Oligonucleotides 2009, 19, 243–254. [Google Scholar] [CrossRef]
- Srisawat, C.; Engelke, D.R. Streptavidin aptamers: Affinity tags for the study of RNAs and ribonucleoproteins. RNA 2001, 7, 632–641. [Google Scholar] [CrossRef]
- Tahiri-Alaoui, A.; Frigotto, L.; Manville, N.; Ibrahim, J.; Romby, P.; James, W. High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands. Nucleic Acids Res. 2002, 30, e45. [Google Scholar] [CrossRef]
- Alon, R.; Bayer, E.A.; Wilchek, M. Streptavidin contains an RYD sequence which mimics the RGD receptor domain of fibronectin. Biochem. Biophys. Res. Commun. 1990, 170, 1236–1241. [Google Scholar] [CrossRef]
- Little, J.W. An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction. J. Biol. Chem. 1967, 242, 679–686. [Google Scholar]
- Little, J.W. Lambda exonuclease. Gene Amplif. Anal. 1981, 2, 135–145. [Google Scholar]
- Kang, J.; Lee, M.S.; Gorenstein, D.G. The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine: Application to in vitro combinatorial selection of aptamers. J. Biochem. Biophys. Methods 2005, 64, 147–151. [Google Scholar] [CrossRef]
- Viswanathan, V.K.; Krcmarik, K.; Cianciotto, N.P. Template secondary structure promotes polymerase jumping during PCR amplification. Biotechniques 1999, 27, 508–511. [Google Scholar]
- Chakrabarti, R.; Schutt, C.E. The enhancement of PCR amplification by low molecular weight amides. Nucleic Acids Res. 2001, 29, 2377–2381. [Google Scholar] [CrossRef]
- Henke, W.; Herdel, K.; Jung, K.; Schnorr, D.; Loening, S.A. Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res. 1997, 25, 3957–3958. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Avci-Adali, M.; Paul, A.; Wilhelm, N.; Ziemer, G.; Wendel, H.P. Upgrading SELEX Technology by Using Lambda Exonuclease Digestion for Single-Stranded DNA Generation. Molecules 2010, 15, 1-11. https://doi.org/10.3390/molecules15010001
Avci-Adali M, Paul A, Wilhelm N, Ziemer G, Wendel HP. Upgrading SELEX Technology by Using Lambda Exonuclease Digestion for Single-Stranded DNA Generation. Molecules. 2010; 15(1):1-11. https://doi.org/10.3390/molecules15010001
Chicago/Turabian StyleAvci-Adali, Meltem, Angel Paul, Nadj Wilhelm, Gerhard Ziemer, and Hans Peter Wendel. 2010. "Upgrading SELEX Technology by Using Lambda Exonuclease Digestion for Single-Stranded DNA Generation" Molecules 15, no. 1: 1-11. https://doi.org/10.3390/molecules15010001
APA StyleAvci-Adali, M., Paul, A., Wilhelm, N., Ziemer, G., & Wendel, H. P. (2010). Upgrading SELEX Technology by Using Lambda Exonuclease Digestion for Single-Stranded DNA Generation. Molecules, 15(1), 1-11. https://doi.org/10.3390/molecules15010001