Carotenoids from Mangifera Pajang and Their Antioxidant Capacity
Abstract
:1. Introduction
2. Results
2.1. High Performance Liquid Chromatography (HPLC) Analysis of Carotenoids in Bambangan Peel and Pulp Extracts
Peak no. | Carotenoid | Retention time | k' | α | Peak purity | Concentration* | λmax (nm) | ||
---|---|---|---|---|---|---|---|---|---|
1 | Unknown | 7.27 ± 0.3 | 3.33 | 1.38 (1,2) | 93.5 | − | 398 | 420 | 440 |
2 | Unknown | 9.39 ± 0.2 | 4.59 | 1.41 (2,4) | 99.0 | − | 424 | 444 | 470 |
3 | − | − | − | − | − | − | − | − | − |
4 | Unknown | 12.59 ± 0.3 | 6.49 | 1.84 (4,5) | 99.7 | − | 402 | 425 | 446 |
5 | Unknown | 21.72 ± 0.1 | 11.93 | 1.15 (5,6) | 99.0 | − | 402 | 428 | 446 |
6 | Unknown | 24.63 ± 0.2 | 13.66 | 1.08 (6,7) | 99.9 | − | 404 | 428 | 450 |
7 | Unknown | 26.55 ± 0.3 | 14.80 | 1.06 (7,8) | 99.5 | − | 404 | 428 | 450 |
8 | Cryptoxanthin | 28.10 ± 0.4 | 15.73 | 1.03 (8,9) | 91.6 | 0.60 ± 0.001 | 424 | 444 | 472 |
9 | Cis-cryptoxanthin | 28.81 ± 0.1 | 16.15 | 1.09 (9,10) | 99.0 | 0.07 ± 0.001 | 424 | 446 | 470 |
10 | Cis-β-carotene | 31.35 ± 0.3 | 17.66 | 1.24 (10,11) | 96.6 | 2.87 ± 0.52 | 424 | 446 | 472 |
11 | All-trans-α-carotene | 38.53 ± 0.2 | 21.93 | 1.12 (11,12) | 99.0 | 4.20 ± 0.14 | 428 | 450 | 476 |
12 | Cis-β-carotene | 42.97 ± 0.1 | 24.58 | 1.04 (12,13) | 99.0 | 3.64 ± 0.48 | 428 | 453 | 476 |
13 | All-trans-β-carotene | 44.49 ± 0.1 | 25.48 | 1.09 (13,14) | 99.9 | 13.09 ± 0.28 | 428 | 453 | 478 |
14 | Unknown | 48.36 ± 0.2 | 27.79 | 1.04 (14,15) | 99.9 | − | 404 | 458 | 478 |
15 | 9-Cis-β-carotene | 50.11 ± 0.2 | 28.83 | 1.04 (14,15) | 99.4 | 2.53 ± 0.66 | 428 | 444 | 468 |
Peak no. | Carotenoid | Retention time | k' | α | Peak purity | Concentration* | λmax (nm) | ||
---|---|---|---|---|---|---|---|---|---|
1 | Unknown | 7.32 ± 0.2 | 3.21 | 1.36 (1,2) | 96.3 | − | 400 | 402 | 444 |
2 | Unknown | 9.34 ± 0.3 | 4.37 | 1.17 (2,3) | 99.0 | − | 416 | 442 | 468 |
3 | Ζeta-carotene | 11.72 ± 0.3 | 5.13 | 1.23(3,4) | 99.0 | − | 398 | 422 | 444 |
4 | Unknown | 12.68 ± 0.2 | 6.29 | 2.09 (4,6) | 85.2 | − | 400 | 422 | 446 |
5 | − | − | − | − | − | − | − | − | − |
6 | Unknown | 24.62 ± 0.1 | 13.15 | 1.09 (6,7) | 99.6 | − | 424 | 444 | 464 |
7 | Unknown | 26.75 ± 0.3 | 14.37 | 1.06 (7,8) | 99.9 | − | 424 | 444 | 464 |
8 | Cryptoxanthin | 28.23 ± 0.2 | 15.22 | 1.12 (8,10) | 99.7 | 1.18 ± 0.01 | 424 | 444 | 472 |
9 | − | − | − | − | − | − | − | − | − |
10 | Cis-β-carotene | 31.51 ± 0.2 | 17.11 | 1.24 (10,11) | 99.9 | 3.04 ± 0.13 | 424 | 444 | 470 |
11 | All-trans-α-carotene | 38.79 ± 0.2 | 21.29 | 1.07 (11,12) | 99.5 | 7.96 ± 1.53 | 424 | 450 | 470 |
12 | Cis-β-carotene | 41.43 ± 0.3 | 22.81 | 1.08 (12,13) | 99.0 | 3.74 ± 0.37 | 420 | 444 | 474 |
13 | All-trans-β-carotene | 44.69 ± 0.1 | 24.68 | 1.09 (13,14) | 99.9 | 20.04 ± 1.01 | 428 | 453 | 478 |
14 | Unknown | 48.62 ± 0.3 | 26.94 | 1.05 (14,15) | 99.0 | − | 402 | 453 | 487 |
15 | 9-Cis-β-carotene | 50.90 ± 0.2 | 28.25 | 1.05 (14,15) | 99.0 | 2.72 ± 0.10 | 426 | 444 | 472 |
2.2. Antioxidant Activity of Chemical Assay
2.3. Antioxidant Activity of Biological Assays
3. Discussion
4. Materials and Methods
4.1. Chemicals and Standards
4.2. Extraction of Sample
4.3. HPLC Determination of Carotenoids
4.4. Identification of Carotenoids
4.5. Preparation of Standard Curve and Recovery
4.6. Antioxidant Capacity
4.6.1. 2,2-Diphenyl-2-picrylhydrazyl (DPPH) Radical Scavenging Assay
4.6.2. RBC preparation and LDL Isolation
4.6.3. Copper-induced LDL Oxidation
4.6.4. Hemoglobin Oxidation Assay
4.7. Statistical Analysis
5. Conclusions
Acknowledgements
- Samples Availability: Samples of the compounds (carotenoids mixture) are available from the authors.
References
- Ajila, C.M.; Prasada Rao, U.J.S. Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Mangifera indica L. peel extract. Food Chem. Toxicol. 2008, 46, 303–309. [Google Scholar] [CrossRef]
- Woodall, A.A.; Britton, G.; Jackson, M.J. Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: Relationship between carotenoid structure and protective ability. Biochim. Biophy. Acta 1997, 1336, 575–586. [Google Scholar]
- Mayne, S.T. Beta-carotene, carotenoids, and disease prevention in humans. FASEB Journal 1996, 10, 690–701. [Google Scholar]
- Tavanil, A.; La Vecchia, C. β-carotene and risk of coronary heart disease. A review of observational and intervention studies. Biomed. Pharmacotherap. 1999, 53, 409–416. [Google Scholar] [CrossRef]
- ESA. Carotenoid Isomers; ESA Application Note, 5600A. ESA Inc: Chelmsford, MA, USA, 2009. Available online: http://www.esainc.com/docs/spool/70-4927P_Carotenoid_Isomers.pdf/, accessed on 7 October 2009.
- Idris, K.; Idris, S. Nutrient composition of Malaysian indigenous fruits; Abstract of the Nutrition Society of Malaysia 18th Scientific Conference. Kuala Lumpur, Malaysia; 22–23 March 2003. [Google Scholar]
- Khoo, H.E.; Ismail, A. Determination of daidzein and genistein contents in Mangifera fruits. Mal. J. Nutr. 2008, 14, 189–198. [Google Scholar]
- Abu Bakar, M.F.; Mohamed, M.; Rahmat, A.; Fry, J. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chem. 2009, 113, 479–483. [Google Scholar] [CrossRef]
- Chen, J.P.; Tai, C.Y.; Chen, B.H. Improved liquid chromatographic method for determination of carotenoids in Taiwanese mango (Mangifera indica L.). J. Chromatogr. A 2004, 1054, 261–268. [Google Scholar]
- Rodriguez-Amaya, D.B.; Kimura, M. Harvest Plus Technical Monograph Series 2. In HarvestPlus Handbook for Carotenoid Analysis; International Food Policy Research Institute and International Center for Tropical Agriculture: Washington, DC, USA, 2004. [Google Scholar]
- Jimenez-Escrig, A.; Jimenez-Jimenez, I.; Sanchez-Moreno, C.; Saura-Calixt, F. Evaluation of free radical scavenging of dietary carotenoids by the stable radical 2,2-diphenyl-1-picrylhydrazyl. J. Sci. Food Agr. 2000, 80, 1686–1690. [Google Scholar] [CrossRef]
- Craft, N.E.; Soares, J.H. Relative solubility, stability, and absorptivity of lutein and beta-carotene in organic solvents. J. Agric. Food Chem. 2002, 40, 431–434. [Google Scholar]
- El-Demerdash, F.M.; Yousef, M.I.; Kedwany, F.S.; Baghdadi, H.H. Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: Protective role of vitamin E and b-carotene. Food Chem. Toxicol. 2004, 42, 1563–1571. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; International Life Sciences Institute (ILSI) Press: Washington, DC, USA, 2001. [Google Scholar]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Filipe, P.; Silva, A.M.S.; Seixas, R.S.G.R.; Pinto, D.C.G.A.; Santos, A.; Patterson, L.K.; Silva, J. N.; Cavaleiro, J.A.S.; Freitas, J.P.; Mazière, J.-C.; Santus, R.; Morlière, P. The alkyl chain length of 3-alkyl-3’,4’,5,7-tetrahydroxyflavones modulates effective inhibition of oxidative damage in biological systems: Illustration with LDL, red blood cells and human skin keratinocytes. Biochem. Pharmacol. 2009, 77, 957–964. [Google Scholar] [CrossRef]
- Palozza, P.; Serini, S.; Trombino, S.; Lauriola, L.; Ranelletti, F.O.; Calviello, G. Dual role of β-carotene in combination with cigarette smoke aqueous extract on the formation of mutagenic lipid peroxidation products in lung membranes: Dependence on pO2. Carcinogenesis 2006, 27, 2383–2391. [Google Scholar] [CrossRef]
- Khoo, H.E.; Ismail, A.; Mohd-Esa, N.; Idris, S. Carotenoid content of underutilized fruits. Plant Foods Human Nutri. 2008, 63, 170–175. [Google Scholar] [CrossRef]
- Princen, H.M.; van Poppel, G.; Vogelezang, C.; Buytenhek, R.; Kok, F.J. Supplementation with vitamin E but not beta-carotene in vivo protects low density lipoprotein from lipid peroxidation in vitro. Effect of cigarette smoking. Arterioscler. Thromb. Vasc. Biol. 1992, 12, 554–562. [Google Scholar]
- Lau, B.H.S. Suppression of LDL Oxidation by Garlic. J. Nutr. 2001, 131, 985S–988S. [Google Scholar]
- Heinecke, J.W. Lipoprotein oxidation in cardiovascular disease: Chief culprit or innocent bystander? J. Exp. Med. 2006, 203, 813–816. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Zheng, T. The in vitro antioxidant activity of lotus germ oil from supercritical fluid carbon dioxide extraction. Food Chem. 2009, 115, 939–944. [Google Scholar] [CrossRef]
- Ajila, C.M.; Naidu, K.A.; Bhat, S.G.; Prasada Rao, U.J.S. Bioactive compounds and antioxidant potential of mango peel extract. Food Chem. 2007, 105, 982–988. [Google Scholar] [CrossRef]
- Sapitnitskaya, M.; Maul, P.; McCollum, G.T.; Guy, C.L.; Weiss, B.; Samach, A.; Porat, R. Postharvest heat and conditioning treatments activate different molecular responses and reduce chilling injuries in grapefruit. J. Exp. Botany 2006, 57, 2943–2953. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar] [CrossRef]
- Tai, C.Y.; Chen, B.H. Analysis and stability of carotenoids in the flowers of Daylily (Hemerocallis disticha) as affected by various treatments. J. Agric. Food Chem. 2001, 48, 5962–5968. [Google Scholar]
- Holcombe, D. The fitness for purpose of analytical methods. In EURACHEM Guide; EURACHEM Working Group: Prague, Czech Republic, 1998. [Google Scholar]
- AOAC. Method Validation. AOAC Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals, AOAC International, Maryland, USA; 2002. Available online: http://www.aoac.org/vmeth/page1.htm/, accessed on 10 September 2009.
- Lai, L.S.; Chou, S.T.; Chao, W.W. Studies on the antioxidative activities of hsian-tsao (Mesona procumbens Hemsl) leaf gum. J. Agric. Food Chem. 2001, 49, 963–968. [Google Scholar] [CrossRef]
- Chu, Y.F.; Liu, R.H. Cranberries inhibit LDL oxidation and induce LDL receptor expression in hepatocytes. Life Sci. 2005, 77, 1892–1901. [Google Scholar] [CrossRef]
- Graham, J.M.; Higgins, J.A.; Gillott, T.; Taylor, T.; Wilkinson, J.; Ford, T.; Billington, D. A novel method for the rapid separation of plasma lipoproteins using self-generating gradients of iodixanol. Atherosclerosis 1996, 124, 125–135. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Tsoukatos, D.C.; Arborati, M.; Liapikos, T.; Clay, K.L.; Murphy, R.C.; Chapman, M.J.; Ninio, E. Copper-Catalyzed Oxidation Mediates PAF Formation in Human LDL Subspecies. Arter. Thromb. Vasc. Biol. 1997, 17, 3505–3512. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Meth. Enzymology 1978, 52, 302–310. [Google Scholar]
- Rodríguez, J.; Di Pierro, D.; Gioia, M.; Monaco, S.; Delgado, R.; Coletta, M.; Marini, S. Effects of a natural extract from Mangifera indica L, and its active compound, mangiferin, on energy state and lipid peroxidation of red blood cells. Biochim. Biophy. Acta 2006, 1760, 1333–1342. [Google Scholar] [CrossRef] [Green Version]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Khoo, H.-E.; Prasad, K.N.; Ismail, A.; Mohd-Esa, N. Carotenoids from Mangifera Pajang and Their Antioxidant Capacity. Molecules 2010, 15, 6699-6712. https://doi.org/10.3390/molecules15106699
Khoo H-E, Prasad KN, Ismail A, Mohd-Esa N. Carotenoids from Mangifera Pajang and Their Antioxidant Capacity. Molecules. 2010; 15(10):6699-6712. https://doi.org/10.3390/molecules15106699
Chicago/Turabian StyleKhoo, Hock-Eng, K. Nagendra Prasad, Amin Ismail, and Nohaizan Mohd-Esa. 2010. "Carotenoids from Mangifera Pajang and Their Antioxidant Capacity" Molecules 15, no. 10: 6699-6712. https://doi.org/10.3390/molecules15106699
APA StyleKhoo, H.-E., Prasad, K. N., Ismail, A., & Mohd-Esa, N. (2010). Carotenoids from Mangifera Pajang and Their Antioxidant Capacity. Molecules, 15(10), 6699-6712. https://doi.org/10.3390/molecules15106699