Antiproliferative Activity, Antioxidant Capacity and Tannin Content in Plants of Semi-Arid Northeastern Brazil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antioxidant activity
2.2. Tannin content
2.3. Antiproliferative activities
3. Experimental
3.1. Plant selection
3.2. Preparation of extracts
3.3. Determination of tannins
3.4. Antiproliferative activity
3.5. Quantification of antioxidant activity using the DPPH method (2,2-diphenyl-2-picrylhydrazyl)
4. Conclusions
Acknowledgements
References
- Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer and anti-HIV agents. Ann. Appl. Biol. 2003, 143, 127–133. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, Jan; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Strategies of antioxidant defense. Eur. J. Biochem. 1993, 215, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Coley, P.D.; Bryant, J.P.; Chapin, F.S. Resource availability and plant antiherbivore defense. Science 1985, 230, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Macías, F.A.; Galindo, J.L.G.; Galindo, J.C.G. Evolution and current status of ecological phytochemistry. Phytochemistry 2007, 68, 2917–2936. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Koleckar, V.; Kubikova, K.; Rehakova, Z.; Kuca, K.; Jun, D.; Jahodar, L.; Opletal, L. Condensed and hydrolysable tannins as antioxidants influencing the health. Mini Rev. Med. Chem. 2008, 8, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Araújo, E.L.; Castro, C.C.; Albuquerque, U.P. Dynamics of Brazilian caatinga. Funct. Ecosyst. Commun. 2007, 1, 15–28. [Google Scholar]
- Morais, S.M.; Catunda Júnior, F.E.A.; Silva, A.R.A.; Martins Neto, J.S.; Rondina, D.; Cardoso, J.H.L. Antioxidant activity of essential oils from Northeastern Brazilian Croton species. Quim. Nova 2006, 29, 907–910. [Google Scholar] [CrossRef]
- David, J.P.; Meira, M.; David, J.M.; Brandão, H.N.; Branco, A.; Agra, M.F.; Barbosa, M.R.V.; Queiroz, L.P.; Giulietti, A.M. Radical scavenging, antioxidant and cytotoxic activity of Brazilian Caatinga plants. Fitoterapia 2007, 78, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, J.M.; Lins Neto, E.M.F.; Amorim, E.L.C.; Strattmann, R.R.; Araújo, E.L.; Albuquerque, U.P. Tannin concentration in three simpatric medicinal plants from caatinga vegetation. Rev. Árvore 2005, 29, 999–1005. [Google Scholar] [CrossRef]
- Monteiro, J.M.; Albuquerque, U.P.; Lins Neto, E.M.F.; Araújo, E.L.; Albuquerque, M.M.; Amorim, E.L.C. The effects of seasonal climate changes in the Caatinga on tannin levels in Myracrodruon urundeuva (Engl.) Fr. All. and Anadenanthera colubrina (Vell.) Brenan. Braz. J. Pharmacogn. 2006, 16, 338–344. [Google Scholar] [CrossRef]
- Mans, D.R.A.; Rocha, A.B.; Schwartsmann, G. Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncologist 2000, 5, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Liaw, C.-C.; Chang, F.-R.; Lin, C.-Y.; Chou, C.-J.; Chiu, H.-F.; Wu, M.-J.; Wu, Y.-C. New Cytotoxic Monotetrahydrofuran Annonaceous Acetogenins from Annona muricata. J. Nat. Prod. 2002, 65, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.-R.; Wu, Y.-C. Novel Cytotoxic Annonaceous Acetogenins from Annona muricata. J. Nat. Prod. 2001, 64, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Sharma, P.D.; Bansal, M.P.; Singh, J. Lantadene A-induced apoptosis in human leukemia HL-60 cells. Indian J. Pharmacol. 2007, 39, 140–144. [Google Scholar] [CrossRef]
- Kaur, J.; Sharma, M.; Sharma, P.D.; Bansal, M.P. Chemopreventive activity of lantadenes on two-stage carcinogenesis model in Swiss albino mice: AP-1 (c-jun), NFkB (p65) and P53 expression by ELISA and immunohistochemical localization. Mol. Cell Biochem. 2008, 314, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Podar, K.; Tai, Y.T.; Lin, B.; Hideshima, T.; Akiyama, M.; LeBlanc, R.; Catley, L.; Mitsiades, N.; Mitsiades, C.; Chauhan, D.; Munshi, N.C.; Anderson, K.C. β-lapachone, a novel plant product, overcomes drug resistance in human multiple myeloma cells. Exp. Hematol. 2002, 30, 711–720. [Google Scholar] [CrossRef]
- Choi, B.T.; Cheong, J.H.; Choi, Y.H. β-Lapachone-induced apoptosis is associated with activation of caspase-3 and inactivation of NF-jB in human colon câncer HCT-116 cells. Anti-Cancer Drugs 2003, 14, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.L.; Ramos, M.A.; Silva, S.I.; Sales, M.F.; Albuquerque, U.P. Caatinga Ethnobotany: Anthropogenic Landscape Modification and Useful Species in Brazil’s Semi-Arid Northeast. Econ. Bot. 2009, 63, 363–374. [Google Scholar] [CrossRef]
- Hagerman, A.E. Radial difusion method for determining tannin in plant extrats. J. Chem. Ecol. 1987, 13, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Weisenthal, L.M.; Marsden, J.A.; Dill, P.L.; Macaluso, C.K. A novel dye exclusion method for testing in vitro chemosensitivity of human tumors. Cancer Res. 1983, 43, 749–757. [Google Scholar] [PubMed]
- Alley, M.C.; Scudiero, D.A.; Monks, A.; Hursey, M.L.; Czerwinski, M.J.; Fine, D.L.; Abbott, B.J.; Mayo, J.G.; Shoemaker, R.H.; Boyd, M.R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988, 48, 589–601. [Google Scholar] [PubMed]
- Cotelle, N.; Bernier, J.-L.; Catteau, J.-P.; Pommery, J.; Wallet, J.-C.; Gaydou, E.M. Antioxidant properties of hydroxy-flavones. Free Radic. Biol. Med. 1996, 20, 35–43. [Google Scholar] [CrossRef]
- McCune, L.M.; Johns, T. Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the Indigenous Peoples of the North American boreal forest. J. Ethnopharmacol. 2002, 82, 197–205. [Google Scholar] [CrossRef]
- McCune, L.M.; Johns, T. Antioxidant activity relates to plants part, life form and condition in some diabetes remedies. J. Ethnopharmacol. 2007, 112, 461–469. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Available from the authors. |
Family/ Species (Voucher number) | Type/ part used | Antioxidant activity (IC50 in µg/mL) | Tannin content (mg/100 mg) | Percentage of living cells in the HEp-2 cell line (%) | Percentage of living cells in the NCI-H292 cell line (%) |
---|---|---|---|---|---|
Annonaceae | |||||
Annona muricata L. (50480) | tree/ leaves | 221.52 ± 16.12 | ND | 54.92 ± 1.44 | 24.94 ± 0.74 |
Asteraceae | |||||
Ageratum conyzoides L. (50478) | herb/ aerial parts | 340.17 ± 31.94 | ND | 81.45 ± 0.85 | 105.14 ± 3.34 |
Delilia biflora (L.) Kuntze (50477) | herb/ aerial parts | 533.02 ± 31.92 | ND | 58.19 ± 2.49 | 77.37 ± 1.05 |
Bignoniaceae | |||||
Handroanthus impetiginosus (Mart. ex DC.) Mattos (50481) | tree/ leaves | 173.17 ± 16.56 | ND | 45.73 ± 2.19 | 41.8 ± 0.47 |
Cyperaceae | |||||
Cyperus distans L. f. (50487) | herb/ aerial parts | 258.42 ± 15.29 | 1.22 ± 0.02 | 132.09 ± 7.99 | 102.03 ± 1.71 |
Euphorbiaceae | |||||
Croton blanchetianus Baill. (48667) | shrub/ leaves | 94.41 ± 2.67 | 2.13 ± 0.09 | 103.56 ± 3.88 | 94.29 ± 3.96 |
Jatropha mollissima (Pohl) Baill. (48661) | shrub/ leaves | 54.09 ± 4.36 | 2.35 ± 0.08 | 142.06 ± 5.06 | 88.32 ± 0.3 |
Fabaceae | |||||
Amburana cearensis (Allemão) A.C. Sm. (50486) | tree/ leaves | 203.14 ± 6.83 | 1.55 ± 0.11 | 94.58 ± 4.31 | 103.74 ± 1.32 |
Anadenanthera colubrina (Vell.) Brenan (48663) | tree/ leaves | 73.24 ± 1.47 | 4.41 ± 0.47 | 117.32 ± 1.76 | 97.24 ± 0.89 |
Poincianella pyramidalis (Tul.) L. P. Queiroz (48662) | tree/ leaves | 42.95 ± 1.77 | 8.17 ± 0.64 | 90.97 ± 0.94 | 105.46 ± 0.97 |
Crotalaria incana L. (50485) | shrub/ leaves | 1123.28 ± 153.21 | ND | 115.39 ± 2.06 | 102.73 ± 2.23 |
Senna occidentalis (L.) Link (50484) | shrub/ leaves | 628.27 ± 85.14 | ND | 103.37 ± 1.61 | 99.42 ± 0.77 |
Loasaceae | |||||
Mentzelia aspera L. (50483) | herb/ aerial parts | 911.5 ± 166.39 | ND | 45.61 ± 1.94 | 86.04 ± 0.35 |
Verbenaceae | |||||
Lantana camara L. (50479) | shrub/ leaves | 114.63 ± 6.16 | ND | 55.98 ± 0.74 | 25.08 ± 0.19 |
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gomes de Melo, J.; De Sousa Araújo, T.A.; Thijan Nobre de Almeida e Castro, V.; Lyra de Vasconcelos Cabral, D.; Do Desterro Rodrigues, M.; Carneiro do Nascimento, S.; Cavalcanti de Amorim, E.L.; De Albuquerque, U.P. Antiproliferative Activity, Antioxidant Capacity and Tannin Content in Plants of Semi-Arid Northeastern Brazil . Molecules 2010, 15, 8534-8542. https://doi.org/10.3390/molecules15128534
Gomes de Melo J, De Sousa Araújo TA, Thijan Nobre de Almeida e Castro V, Lyra de Vasconcelos Cabral D, Do Desterro Rodrigues M, Carneiro do Nascimento S, Cavalcanti de Amorim EL, De Albuquerque UP. Antiproliferative Activity, Antioxidant Capacity and Tannin Content in Plants of Semi-Arid Northeastern Brazil . Molecules. 2010; 15(12):8534-8542. https://doi.org/10.3390/molecules15128534
Chicago/Turabian StyleGomes de Melo, Joabe, Thiago Antônio De Sousa Araújo, Valérium Thijan Nobre de Almeida e Castro, Daniela Lyra de Vasconcelos Cabral, Maria Do Desterro Rodrigues, Silene Carneiro do Nascimento, Elba Lúcia Cavalcanti de Amorim, and Ulysses Paulino De Albuquerque. 2010. "Antiproliferative Activity, Antioxidant Capacity and Tannin Content in Plants of Semi-Arid Northeastern Brazil " Molecules 15, no. 12: 8534-8542. https://doi.org/10.3390/molecules15128534