Synthesis of New Racemic α,α-Diaminocarboxylic Ester Derivatives
Abstract
:1. Introduction
2. Results and Discussion
Entry | Nu-H | Product | m.p. (°C) | Reaction Time (h) | Yield (%) | δHα (ppm) |
---|---|---|---|---|---|---|
1 | Aniline | Methyl 2-benzamido-2-(phenylamino)acetate (2) | 124-126 | 48 | 80 | 6.22 |
2 | 4-methylaniline (R = Me) | Methyl 2-benzamido-2-(p-tolylamino)acetate (3) | 140-142 | 48 | 90 | 6.14 |
3 | 4-methylaniline (R = Et) | Ethyl 2-benzamido-2-(p-tolylamino)acetate (3’) | 164-166 | 48 | 80 | 6.11 |
4 | 2-methylaniline | Methyl 2-benzamido-2-(o-tolylamino)acetate (4) | 128-130 | 48 | 90 | 6.22 |
5 | 2,4-dimethoxy-aniline | Methyl 2-benzamido-2-(2,4-dimethoxyphenylamino)acetate (5) | 170-172 | 48 | 86.5 | 6.15 |
6 | 4-chloro-2-fluoro-aniline | Methyl 2-benzamido-2-(4-chloro-2-fluorophenylamino)acetate (6) | 152-154 | 48 | 90 | 6.20 |
7 | 2-nitroaniline | Ethyl 2-benzamido-2-(2-nitrophenylamino)acetate (7) | 173-174 | 48 | 86 | 6.82 |
8 | 2-naphthylamine | Ethyl 2-benzamido-2-(2-naphthylamino)acetate (8) | 210-212 | 48 | 62 | 6.25 |
9 | Benzylamine | Methyl 2-benzamido-2-(benzylamino)acetate (9) | 104-106 | 48 | 76 | 5.56 |
10 | N,N-dibenzyl-amine | Methyl 2-benzamido-2-(N,N-dibenzylamino)acetate (10) | 130-132 | 48 | 84 | 5.58 |
11 | 2-amino-cyclohexane | Methyl 2-benzamido-2-(cyclohexylamino)acetate (11) | 182-184 | 48 | 92 | 5.72 |
3. Experimental
3.1. General
3.2. Typical Procedure for N-Alkylation
Acknowledgements
References and Notes
- Duthaler, R.O. Recent developments in the stereoselective synthesis of alpha-amino acids. Tetrahedron 1994, 50, 1539–1650. [Google Scholar] [CrossRef]
- Beller, M.; Eckert, M. Amidocarbonylation-an efficient route to amino acid derivatives. Angew. Chem. 2000, 39, 1011–1027. [Google Scholar]
- Palacios, F.; Alonso, C.; de los Santos, J.M. Synthesis of β-aminophosphonates and phosphinates. Chem. Rev. 2005, 105, 899–932. [Google Scholar] [CrossRef]
- Jin, L.; Song, B.; Zhang, G.; Xu, R.; Zhang, S.; Gao, X.; Hu, D.; Yang, S. Synthesis, X-ray crystallographic analysis, and antitumor activity of N-(benzothiazole-2-yl)-1-(fluorophenyl)-O,O-dialkyl-α-aminophosphonates. Bioorg. Med. Chem. Lett. 2006, 16, 1537–1543. [Google Scholar] [CrossRef]
- Pollegioni, L.; Piubelli, L.; Sacchi, S.; Pilone, M.S.; Molla, G. Physiological functions of D-amino acid oxidases: from yeast to humans. Cell. Mol. Life Sci. 2007, 64, 1373–1394. [Google Scholar] [CrossRef]
- Sacchi, S.; Bernasconi, M.; Martineau, M.; Mothet, J.P.; Ruzzene, M.; Pilone, M.S.; Pollegioni, L.; Molla, G. pLG72 modulates intracellular D-serine levels through its interaction with D-amino acid oxidase: effect on schizophrenia susceptibility. J. Biol. Chem. 2008, 283, 22244–22256. [Google Scholar]
- Haemers, A.; Mishra, L.; Van Assche, I.; Bolleart, W. Asymmetric synthesis of amino acids by enantio- and diastereodifferentiating reactions. Die Pharmazie 1989, 44, 97–109. [Google Scholar]
- Mikolajczyk, M. Acyclic and cyclic aminophosphonic acids: asymmetric syntheses mediated by chiral sulfinyl auxiliary. J. Organomet. Chem. 2005, 690, 2488–2496. [Google Scholar] [CrossRef]
- Meyer, F.; Laaziri, A.; Papini, A.M.; Uziel, J.; Juge, S. A novel phosphorus-carbon bond formation by ring opening with diethyl phosphite of oxazolines derived from serine. Tetrahedron 2004, 60, 3593–3597. [Google Scholar] [CrossRef]
- Rodrigues, R.S.; da Silva, J.F.; Boldrini-FranÇa, J.; Fonseca, F.P.P.; Otaviano, A.R.; Henrique-Silva, F.; Magro, A.J.; Braz, A.S.K.; dos Santos, J.I.; Homsi-Brandeburgo, M.I.; Fontes, M.R.M.; Fuly, A.L.; Soares, A.M.; Rodrigues, V.M. Structural and functional properties of Bp-LAAO, a new L-amino acid oxidase isolated from Bothrops pauloensis snake venom. Biochimie 2009, 91, 490–501. [Google Scholar] [CrossRef]
- Samel, M.; Tõnismägi, K.; Rönnholm, G.; Vija, H.; Siigur, J.; Kalkkinen, N.; Siigur, E. L-Amino acid oxidase from Naja naja oxiana venom. Comp. Biochem. Physiol. 2008, B 149, 572–580. [Google Scholar]
- Leite, A.L.; Lima, R.S.; Moreira, D.R.M.; Cardoso, M.V.; Brito, A.C.G.; Santos, L.M.F.; Hernandes, M.Z.; Kiperstok, A.C.; Lima, R.S.; Soares, M.B.P. Synthesis, docking, and in vitro activity of thiosemicarbazones, aminoacyl-thiosemicarbazides and acyl-thiazolidones against Trypanosoma cruzi. Bioorg. Med. Chem. 2006, 14, 3749–3757. [Google Scholar] [CrossRef]
- Moreira, D.R.; Leite, A.C.L.; Ferreira, P.M.; da Costa, P.M.; Costa Lotufo, L.V.; de Moraes, M.O.; Brondani, D.J.; Pessoa, Cdo.O. Synthesis and antitumour evaluation of peptidyl-like derivatives containing the 1,3-benzodioxole system. Eur. J. Med. Chem. 2007, 42, 351–357. [Google Scholar] [CrossRef]
- Ciscotto, P.; Machado de Avila, R.A.; Coelho, E.A.F.; Oliveira, J.; Diniz, C.G.; Farǐas, L.M.; de Carvalho, M.A.R.; Maria, W.S.; Sanchez, E.F.; Borges, A.; Chavez-Olőrtegui, C. Antigenic, microbicidal and antiparasitic properties of an L-amino acid oxidase isolated from Bothrops jararaca snake venom. Toxicon 2009, 53, 330–341. [Google Scholar] [CrossRef]
- Becker, S.S.; Russell, P.T.; Duncavage, J.A.; Creech, C.B. Current issues in the management of sinonasal methicillin-resistant Staphylococcus aureus. Curr. Opin. Otolaryngol. Head Neck Surg. 2009, 17, 2–5. [Google Scholar] [CrossRef]
- Li, R.; Zhu, S.W.; Wu, J.B.; Wang, W.Y.; Lu, Q.M.; Clemetson, K.J. L-Amino acid oxidase from Naja atra venom activates and binds to human platelets. Acta Biochim. Biophys. Sin. (Shanghai) 2008, 40, 19–26. [Google Scholar] [CrossRef]
- Alves, R.M.; Antonucci, G.A.; Paiva, H.H.; Cintra, A.C.O.; Franco, J.J.; Mendonça-Franqueiro, E.P.; Dorta, D.J.; Giglio, J.R.; Rosa, J.C.; Fuly, A.L.; Dias-Baruffi, M.; Soares, A.M.; Sampaio, S.V. Evidence of aspase mediated apoptosis induced by L-amino acid oxidase isolated from Bothrops atrox snake venom. Comp. Biochem. Physiol. 2008, A 151, 542–550. [Google Scholar]
- Trouet, A.; Passioukov, A.; Van Derpoorten, K.; Fernandez, AM.; Baurain, R.; Abarca-Quinones, J.; Lobl, TJ.; Oliyai, C.; Shochat, D.; Dubois, V. Extracellularly tumor-activated prodrugs for the selective chemotherapy of cancer: application to doxorubicin and preliminary in vitro and in vivo studies. Cancer Res. 2001, 61, 2843–2846. [Google Scholar]
- Wei, X.L.; Wei, J.F.; Li, T.; Qiao, L.Y.; Liu, Y.L.; Huang, T.; He, S.H. Purification, characterization and potent lung lesion activity of an L-amino acid oxidase from Agkistrodon blomhoffii ussurensis snake venom. Toxicon 2007, 50, 1126–1139. [Google Scholar] [CrossRef]
- Sant’Ana, C.D.; Menaldo, D.L.; Costa, T.R.; Godoy, H.; Muller, V.D.; Aquino, V.H.; Albuquerque, S.; Sampaio, S.V.; Monteiro, M.C.; Stábeli, R.G.; Soares, A.M. Antiviral and antiparasite properties of an L-amino acid oxidase from the snake Bothrops jararaca: cloning and identification of a complete cDNA sequence. Biochem. Pharmacol. 2008, 76, 279–288. [Google Scholar]
- Moore, J.D.; Sprott, K.T.; Hanson, P.R. Conformationally constrained α-Boc-aminophosphonates via transition Metal-Catalyzed/Curtius rearrangement strategies. J. Org. Chem. 2002, 67, 8123–8129. [Google Scholar] [CrossRef]
- Stábeli, R.G.; Sant’Ana, C.D.; Ribeiro, P.H.; Costa, T.R.; Ticli, F.K.; Pires, M.G.; Nomizob, A.; Albuquerque, S.; Malta-Neto, N.R.; Marins, M.; Sampaio, S.V.; Soares, A.M. Cytotoxic L-amino acid oxidase from Bothrops moojeni: biochemical and functional characterization. Int. J. Biol. Macromol. 2007, 41, 132–140. [Google Scholar] [CrossRef]
- Leite, A.C.L.; Silva, K.P.; Souza, I.A.; Janete, M.A.; Dalci, J. Synthesis, antitumour and antimicrobial activities of new peptidyl derivativescontaining the 1,3-benzodioxole system. Eur. J. Med. Chem. 2004, 39, 1059–1065. [Google Scholar] [CrossRef]
- Samel, M.; Vija, H.; Rönnholm, G.; Siigur, J.; Kalkkinen, N.; Siigur, E. Isolation and characterization of an apoptotic and platelet aggregation inhibiting L-amino acid oxidase from Vipera berus berus (common viper) venom. Biochim. Biophys. Acta 2006, 1764, 707–714. [Google Scholar] [CrossRef]
- Tőnismägi, K.; Samel, M.; Trummal, K.; Rőnnholm, G.; Siigur, J.; Kalkkinen, N.; Siigur, E. L-Amino acid oxidase from Vipera lebetina venom: isolation, characterization, effects on platelets and bacteria. Toxicon 2006, 48, 227–237. [Google Scholar] [CrossRef]
- Ande, S.R.; Fussi, H.; Knauer, H.; Murkovic, M.; Ghisla, S.; Fröhlich, K.U.; Macheroux, P. Induction of apoptosis in yeast by L-amino acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Yeast 2008, 25, 349–357. [Google Scholar] [CrossRef]
- Reider, P.J.; Eichen Conn, R.S.; Davis, P.; Grenda, V.J.; Zambito, A.J.; Grabowski, E.J.J. Synthesis of (R)-serine-2-d and its conversion to the broad sprectrum antibiotic fludalanine. J. Org. Chem. 1987, 52, 3326–3334. [Google Scholar] [CrossRef]
- Saravanan, P.; Corey, E.J. A short, stereocontrolled, and practical synthesis of alpha-methylomuralide, a potent inhibitor of proteasome function. J. Org. Chem. 2003, 68, 2760–2764. [Google Scholar] [CrossRef]
- Wang, M.; Gould, S.J. Biosynthesis of capreomycin. 2. Incorporation of L-serine, L-alanine, and L-2,3-diaminopropionic acid. J. Org. Chem. 1993, 58, 5176–5180. [Google Scholar] [CrossRef]
- Shen, H.; Xie, Z. Titanacarborane mediated C-N bond forming/breaking reactions. J. Organomet. Chem. 2009, 694, 1652–1657. [Google Scholar] [CrossRef]
- Mohammad, N.S.R.; Ali, K.N.; Somayeh, B.; Mohammad, A.F.; Abdolkarim, Z.; Abolfath, P. One-pot synthesis of N-alkyl purine and pyrimidine derivatives from alcohols using TsIm: a rapid entry into carboacyclic nucleoside synthesis. Tetrahedron 2008, 64, 1778e–1785e. [Google Scholar] [CrossRef]
- Manoj, N.; Vijay, V.B. Selective N-alkylation of aniline with methanol over a heteropolyacid on montmorillonite K10. Appl. Clay Sci. 2009, 44, 255–258. [Google Scholar] [CrossRef]
- Martínez-Asencio, A.; Ramon, D.J.; Miguel, Y. N-Alkylation of poor nucleophilic amine and sulfonamide derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper (II) acetate. Tetrahedron Lett. 2010, 51, 325–327. [Google Scholar] [CrossRef]
- Shmidt, M.S.; Reverdito, A.M.; Kremenchuzky, L.; Perillo, I.A.; Blanco, M.M. Simple and efficient microwave assisted N-alkylation of Isatin. Molecules 2008, 13, 831–840. [Google Scholar] [CrossRef]
- Kiuchi, F.; Nishizawa, S.; Kawanishi, H.; Kinoshita, S.; Ohsima, H.; Uchitani, A.; Sekino, N.; Ishida, Kondo, M.K.; Tsuda, Y. Studies on crude drugs effective on visceral larva migrans. XVI. Nematocidal activity of long alkyl chain amides, amines, and their derivatives on dog roundworm larvae. Chem. Pharma. Bull. Jpn. 1992, 40, 3234–3244. [Google Scholar] [CrossRef]
- Seayad, A.M.A.; Klein, H.; Jackstell, R.; Gross, T.; Beller, M. Internal olefins to linear amines. Science 2002, 297, 1676–1678. [Google Scholar] [CrossRef]
- Kim, J.W.; Yamaguchi, K.; Mizuno, N. Heterogeneously catalyzed selective N-alkylation of aromatic and heteroaromatic amines with alcohols by a supported ruthenium hydroxide. J. Catal. 2009, 263, 205–208. [Google Scholar] [CrossRef]
- Reddy, C.R.; Jithender, E. Acid-catalyzed N-alkylation of tosylhydrazones using benzylic alcohols. Tetrahedron Lett. 2009, 50, 5633–5635. [Google Scholar] [CrossRef]
- Ojima, I.; Delaloge, F. Asymmetric synthesis of building-blocks for peptides and peptidomimetics by means of the β-lactam synthon method. Chem. Soc. Rev. 1997, 26, 377–386. [Google Scholar] [CrossRef]
- Rane, D.F.; Girijavallabhan, V.M.; Ganguly, A.K.; Pike, R.E.; Saksena, A.K.; McPhail, A.T. Total synthesis and absolute stereochemistry of the antifungal dipeptide Sch 37137 and its 2S,3S-isomer. Tetrahedron Lett. 1993, 34, 3201–3204. [Google Scholar]
- Bentama, A.; El Hadrami, E.M.; El Hallaoui, A.; Elachqar, A.; et al. Synthesis of new α-heterocyclic α-aminoesters. Amino Acids 2003, 24, 423–426. [Google Scholar] [CrossRef]
- Maheswaran, H.; Gopi, K.G.; Leon, P.K.; Srinivas, V.; Chaitanya, G.K.; Bhanuprakash, K. Bis(μ-iodo)bis((−)-sparteine)dicopper(I): versatile catalyst for direct N-arylation of diverse nitrogen heterocycles with haloarenes. Tetrahedron 2008, 64, 2471–2479. [Google Scholar] [CrossRef]
- Spreitzer, H.; Puschmann, C. Regioselective Alkylation of an oxonaphthalene-annelated pyrrol system. Molbank 2009, 3, M619. [Google Scholar] [CrossRef]
- Won, K.J.; Yamaguchi, K.; Mizuno, N. Heterogeneously catalyzed selective N-alkylation of aromatic and heteroaromatic amines with alcohols by a supported ruthenium hydroxide. J. Catal. 2009, 263, 205–208. [Google Scholar] [CrossRef]
- Raji, R.C.; Jithender, E. Acid-catalyzed N-alkylation of tosylhydrazones using benzylic alcohols. Tetrahedron Lett. 2009, 50, 5633–5635. [Google Scholar] [CrossRef]
- Fletcher, S. Regioselective alkylation of the exocyclic nitrogen of adenine and adenosine by the Mitsunobu reaction. Tetrahedron Lett. 2010, 51, 2948–2950. [Google Scholar] [CrossRef]
- Martínez-Asensio, A.; Ramón, D. J.; Yus, M. N-Alkylation of poor nucleophilic amine and sulfonamide derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper(II) acetate. Tetrahedron Lett. 2010, 51, 325–327. [Google Scholar] [CrossRef]
- Zarubaev, V.V.; Golod, E.L.; Anfimov, P.M.; Shtro, A.A.; Saraev, V.V.; Gavrilov, A.S.; Logvinov, A.V.; Kiselev, O.I. Synthesis and anti-viral activity of azolo-adamantanes against influenza A virus. Bioorg. Med. Chem. 2010, 18, 839–848. [Google Scholar]
- Shibinskaya, M.O.; Lyakhov, S.A.; Mazepa, A.V.; Andronati, S.A.; Turov, A.V.; Zholobak, N.M.; Spivak, N.Y. Synthesis, cytotoxicity, antiviral activity and interferon inducing ability of 6-(2-aminoethyl)-6H-indolo[2,3-b]quinoxalines. Eur. J. Med. Chem. 2010, 45, 1237–1243. [Google Scholar] [CrossRef]
- Boukallaba, K.; Elachqar, A.; El Hallaoui, A.; Alami, A.; El Hajji, S.; Labriti, B.; Martinez, J.; Rolland, V. Synthesis of new α-heterocyclic α-aminophosphonates. Phosphor. Sulfur Silicon 2006, 181, 819–823. [Google Scholar] [CrossRef]
- Boukallaba, K.; Elachqar, A.; El Hallaoui, A.; Alami, A.; El Hajji, S.; Labriti, B.; Lachkar, M.; Bali, B.; Bolte, M.; Martinez, J.; Rolland, V. Synthesis of α-heterocyclic α-Aminophosphonates, Part II: morpholine, piperidine, pyrrolidine, tetrahydrofurylmethylamine, N-benzyl-N-methylamine, and aniline derivatives. Phosphor. Sulfur Silicon 2007, 182, 1045–1052. [Google Scholar] [CrossRef]
- Steglich, W.; Kober, R. Untersuchungen zur Reaktion von Acylaminobrommalonestern und Acylaminobromessigestern mit Trialkylphosphiten-eine einfache Synthese von 2-Amino-2-(diethoxyphosphoryl)Essigsäure Ethylester. Liebigs Ann Chem. 1983, 4, 599–609. [Google Scholar]
- Achamlale, S.; Elachqar, A.; El Hallaoui, A.; El Hajji, S.; Roumestant, M.L.; Viallefont, P.H. Synthesis of α-triazolyl α-aminoacid derivatives. Amino Acids 1997, 12, 257–263. [Google Scholar] [CrossRef]
- Achamlale, S.; Elachqar, A.; El Hallaoui, A.; El Hajji, S.; Alami, A.; Roumestant, M.L.; Viallefont, P.H. Synthesis of biheterocyclic α-aminoacid. Amino Acids 1999, 17, 149–163. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Houssine, M.E.; Abdelrhani, E.; Anouar, A.; Abdelilah, E.H. Synthesis of New Racemic α,α-Diaminocarboxylic Ester Derivatives. Molecules 2010, 15, 9354-9363. https://doi.org/10.3390/molecules15129354
Houssine ME, Abdelrhani E, Anouar A, Abdelilah EH. Synthesis of New Racemic α,α-Diaminocarboxylic Ester Derivatives. Molecules. 2010; 15(12):9354-9363. https://doi.org/10.3390/molecules15129354
Chicago/Turabian StyleHoussine, Mabrouk El, Elachqar Abdelrhani, Alami Anouar, and El Hallaoui Abdelilah. 2010. "Synthesis of New Racemic α,α-Diaminocarboxylic Ester Derivatives" Molecules 15, no. 12: 9354-9363. https://doi.org/10.3390/molecules15129354
APA StyleHoussine, M. E., Abdelrhani, E., Anouar, A., & Abdelilah, E. H. (2010). Synthesis of New Racemic α,α-Diaminocarboxylic Ester Derivatives. Molecules, 15(12), 9354-9363. https://doi.org/10.3390/molecules15129354