A General Synthetic Procedure for 2-chloromethyl-4(3H)-quinazolinone Derivatives and Their Utilization in the Preparation of Novel Anticancer Agents with 4-Anilinoquinazoline Scaffolds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
Entry | Temp (°C) | Substrates ratio a (2b:11) | Time (h) | Yield (%) |
---|---|---|---|---|
1 | 25 | 1:1 | 2 | 52 |
2 | - | 1:2 | 2 | 68 |
3 | - | 1:3 | 2 | 77 |
4 | - | 1:3 | 2 | 67b |
5 | - | 1:4 | 4 | 78 |
6 | 50 | 1:3 | 2 | 76 |
Entry | Substrate | Product | Yield (%) |
---|---|---|---|
1 | 2a | 3a | 88 |
2 | 2b | 3b | 76 |
3 | 2c | 3ca | 64 |
4 | 2d | 3d | 84 |
5 | 2e | 3e | 75 |
6 | 2f | 3f | 77 |
7 | 2g | 3g | 72 |
8 | 2h | 3ha | 65 |
9 | 2i | 3i | 58 |
10 | 2j | 3j | 70 |
11 | 2k | 3ka | 40 |
12 | 2l | 3la | 16 |
13 | 2m | 3m | 78 |
2.2. Anticancer activity
Compound | IC50 (µM) a | ||
---|---|---|---|
HepG2 | MDA-MB-468 | HCT-116 | |
9 | 3.8 | 3.2 | 12.4 |
10 | 4.3 | 3.2 | 20 |
6.4 | 20 | 160 |
3. Experimental
3.1. General
3.2. Typical procedure for the preparation of 2-chloromethylquinazolinones 3a-3m
3.3. One-pot synthesis of 2-hydroxymethylquiazolin-4(3H)-one (7)
3.4. General procedure for the preparation of 4-anilinoquinazoline derivatives 9 and 10
3.5. In vitro assay for cytotoxic activity (MTT assay)
4. Conclusions
Acknowledgements
- Sample Availability: Samples of the compounds 3a-3m, 9 and 10 are available from the authors.
References and Notes
- Bavetsias, V. A facile route to quinazolin-4(3H)-ones functionalised at the 2-position. Synth. Commun. 1998, 28, 4547–4559. [Google Scholar] [CrossRef]
- Sirisoma, N.; Pervin, A.; Zhang, H.; Jiang, S.; Willardsen, J.A.; Anderson, M.B.; Mather, G.; Pleiman, C.M.; Kasibhatla, S.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of N-(4-methoxyphenyl)-N, 2-dimethylquinazolin-4-amine, a potent apoptosis inducer and efficacious anticancer agent with high blood brain barrier penetration. J. Med. Chem. 2009, 52, 2341–2351. [Google Scholar] [CrossRef]
- Berndt, A.; Miller, S.; Williams, O.; Le, D.D.; Houseman, B.T.; Pacold, J.I.; Gorrec, F.; Hon, W.C.; Ren, P.D.; Liu, Y.; Rommel, C.; Gaillard, P.; Ruckle, T.; Schwarz, M.K.; Shokat, K.M.; Shaw, J.P.; Williams, R.L. The p110 delta structure: mechanisms for selectivity and potency of new PI (3) K inhibitors. Nat. Chem. Biol. 2010, 6, 117–124. [Google Scholar] [CrossRef]
- Brunton, S.A.; Stibbard, J.H.A.; Rubin, L.L.; Kruse, L.I.; Guicherit, O.M.; Boyd, E.A.; Price, S. Potent inhibitors of the hedgehog signaling pathway. J. Med. Chem. 2008, 51, 1108–1110. [Google Scholar] [CrossRef]
- Zheng, Y.Z.; Zhao, Y.L.; Deng, X.Q.; Yang, S.Y.; Mao, Y.Q.; Li, Z.G.; Jiang, P.D.; Zhao, X.; Wei, Y.Q. Chloroquine inhibits colon cancer cell growth in vitro and tumor growth in vivo via inductionof apoptosis. Cancer Invest. 2009, 27, 286–292. [Google Scholar] [CrossRef]
- Xie, H.Z.; Li, L.L.; Ren, J.X.; Zou, J.; Yang, L.; Wei, Y.Q.; Yang, S.Y. Pharmacophore modeling study based on known Spleen tyrosine kinaseinhibitors together with virtual screening for identifying novel inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 1944–1949. [Google Scholar]
- Zeng, X.X.; Zheng, R.L.; Zhou, T.; He, H.Y.; Liu, J.Y.; Zheng, Y.; Tong, A.P.; Xiang, M.L.; Song, S.R.; Yang, S.Y.; Yu, L.T.; Wei, Y.Q.; Zhao, Y.L.; Yang, L. Novel thienopyridine derivatives as specific anti-hepatocellular carcinoma (HCC) agents: synthesis, preliminary structure-activity relationships, and in vitro biological evaluation. Bioorg. Med. Chem. Lett. 2010, 20, 6282–6285. [Google Scholar]
- Wei, Y.Q.; Wang, Q.R.; Zhao, X.; Yang, L.; Tian, L.; Lu, Y.; Kang, B.; Lu, C.J.; Huang, M.J.; Lou, Y.Y.; Xiao, F.; He, Q.M.; Shu, J.M.; Xie, X.J.; Mao, Y.Q.; Lei, S.; Luo, F.; Zhou, L.Q.; Liu, C.E.; Zhou, H.; Jiang, Y.; Peng, F.; Yuan, L.P.; Li, Q.; Wu, Y.; Liu, J.Y. Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat. Med. 2000, 6, 1160–1166. [Google Scholar]
- Hennequin, L.F.; Boyle, F.T.; Wardleworth, J.M.; Marsham, P.R.; Kimbell, R.; Jackman, A.L. Quinazoline antifolates thymidylate synthase inhibitors: lipophilic analogues with modification to the C2-methyl substituent. J. Med. Chem. 1996, 39, 695–704. [Google Scholar] [CrossRef]
- Wright, S.W.; Carlo, A.A.; Carty, M.D.; Danley, D.E.; Hageman, D.L.; Karam, G.A.; Levy, C.B.; Mansour, M.N.; Mathiowetz, A.M.; McClure, L.D.; Nestor, N.B.; McPherson, R.K.; Pandit, J.; Pustilnik, L.R.; Schulte, G.K.; Soeller, W.C.; Treadway, J.L.; Wang, I.K.; Bauer, P.H. Anilinoquinazoline inhibitors of fructose 1,6-bisphosphatase bind at a novel allosteric site: synthesis, in vitro characterization, and X-ray crystallography. J. Med. Chem. 2002, 45, 3865–3877. [Google Scholar]
- Kabri, Y.; Gellis, A.; Vanelle, P. Microwave-assisted synthesis in aqueous medium of new quinazoline derivatives as anticancer agent precursors. Green Chem. 2009, 11, 201–208. [Google Scholar] [CrossRef]
- Kabri, Y.; Azas, N.; Dumetre, A.; Hutter, S.; Laget, M.; Verhaeghe, P.; Gellis, A.; Vanelle, P. Original quinazoline derivatives displaying antiplasmodial properties. Eur. J. Med. Chem. 2010, 45, 616–622. [Google Scholar] [CrossRef]
- Li, W.W.; Chen, J.J.; Zheng, R.L.; Zhang, W.Q.; Cao, Z.X.; Yang, L.L.; Qing, X.Y.; Zhou, L.X.; Yang, L.; Yu, L.D.; Chen, L.J.; Wei, Y.Q.; Yang, S.Y. Taking quinazoline as a general support-nog to design potent and selective kinase inhibitors: application to FMS-like tyrosine kinase 3. ChemMedChem. 2010, 5, 513–516. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, H.-Z.; He, H.-Y.; Han, Y.-Y.; Gu, X.; He, L.; Qi, Q.-R.; Zhao, Y.-L.; Yang, L. A General Synthetic Procedure for 2-chloromethyl-4(3H)-quinazolinone Derivatives and Their Utilization in the Preparation of Novel Anticancer Agents with 4-Anilinoquinazoline Scaffolds. Molecules 2010, 15, 9473-9485. https://doi.org/10.3390/molecules15129473
Li H-Z, He H-Y, Han Y-Y, Gu X, He L, Qi Q-R, Zhao Y-L, Yang L. A General Synthetic Procedure for 2-chloromethyl-4(3H)-quinazolinone Derivatives and Their Utilization in the Preparation of Novel Anticancer Agents with 4-Anilinoquinazoline Scaffolds. Molecules. 2010; 15(12):9473-9485. https://doi.org/10.3390/molecules15129473
Chicago/Turabian StyleLi, Hong-Ze, Hai-Yun He, Yuan-Yuan Han, Xin Gu, Lin He, Qing-Rong Qi, Ying-Lan Zhao, and Li Yang. 2010. "A General Synthetic Procedure for 2-chloromethyl-4(3H)-quinazolinone Derivatives and Their Utilization in the Preparation of Novel Anticancer Agents with 4-Anilinoquinazoline Scaffolds" Molecules 15, no. 12: 9473-9485. https://doi.org/10.3390/molecules15129473
APA StyleLi, H. -Z., He, H. -Y., Han, Y. -Y., Gu, X., He, L., Qi, Q. -R., Zhao, Y. -L., & Yang, L. (2010). A General Synthetic Procedure for 2-chloromethyl-4(3H)-quinazolinone Derivatives and Their Utilization in the Preparation of Novel Anticancer Agents with 4-Anilinoquinazoline Scaffolds. Molecules, 15(12), 9473-9485. https://doi.org/10.3390/molecules15129473