Antileishmanial, Antimicrobial and Antifungal Activities of Some New Aryl Azomethines
Abstract
:Introduction
Results and Discussion
Antileishmaniasis activity
Antifungal activity
- (i)
- None of the compounds are inactive against C. albicans or C. glabrata.
- (ii)
- Only compound 17 has moderate activity against A. flavus.
- (iii)
- Azomethines 4, 5, 12 and 14 have low activity against M. canis, whereas compound 9 has good antifungal activity against the same fungus.
- (iv)
- Azomethine 9 shows moderate activity against F. solani, whereas azomethines 4, 11, 17 and 18 have low activity against the same fungus.
Antibacterial activity
Experimental
General
Chemistry: General procedure for synthesis of azomethines
Biological Screening: Antileishmaniasis Activity - Preparation of Samples
Antifungal activity
Antibacterial Activity
Conclusion
Acknowledgments
References
- Modabber, F. Tropical Disease Research Progress Leishmaniasis. In Tropical Disease Research Progress 1991–1992; World Health Organization: Geneva, Switzerland, 1993; pp. 77–87. [Google Scholar]
- Croft, S.L. The current status of antiparasite chemotherapy. Parasitology 1997, 114, 3–15. [Google Scholar]
- Engers, H.D.; Bergquist, R.; Modabber, F. Progress on vaccines against parasites. Dev. Biol. Stand. 1996, 87, 73–84. [Google Scholar] [PubMed]
- Murray, H.W. Treatment of visceral leishmaniasis in 2004. Am. J. Trop. Med. Hyg. 2004, 71, 787–794. [Google Scholar] [PubMed]
- Croft, S.L. Recent developments in the chemotherapy of leishmaniasis. Trends Pharmacol. Sci. 1988, 9, 376–381. [Google Scholar] [CrossRef]
- Berman, J.D. Chemotherapy for leishmaniasis: biochemical mechanisms, clinical efficacy, and future strategies. Rev. Infect. Dis. 1988, 10, 560–586. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.Y.; Mayr, A.; Cheung, K.K. Synthesis of transition metal isocyanide complexes containing hydrogen bonding sites in peripheral locations. Inorg. Chim. Acta. 1999, 285, 223–232. [Google Scholar] [CrossRef]
- Ispir, E.; toroglu, S.; karyaldiz, A. Synthesis, characterization, antimicrobial and genotoxic activities of new Schiff bases and their complexes. Transition Met. Chem. 2008, 33, 953–960. [Google Scholar] [CrossRef]
- Ispir, E.; Kurtoglu, M.; Purtas, F. Synthesis and antimicrobial activity of new Schiff bases having the –SiOR group (R=CH3 or CH2CH3), and their transition metal complexes. Trans. Met. Chem. 2005, 30, 1042–1047. [Google Scholar] [CrossRef]
- Supuran, C.T.; Barboiu, M.; Luca, C.; Pop, E.; Brewster, M.E.; Dinculescu, A. Carbonic anhydrase activators. Part 14. Syntheses of mono and bis pyridinium salt derivatives of 2-amino-5-(2-aminoethyl)- and 2-amino-5-(3-aminopropyl)-1,3,4-Thiadiazole and their interaction with isozyme II. Eur. J. Med. Chem. 1996, 31, 597–606. [Google Scholar] [CrossRef]
- Sharma, K.P.; Jolly, V.S.; Phatak, P. Schiff bases and their derivatives as potential anticancer agents. Ultra Scient. Phys. Sci. 1998, 10, 263–266. [Google Scholar]
- Kuzamin, V.E.; Artemenko, A.G.; Lozytska, R.N.; Fedtchouk, A.S.; Lozitsky, V.P.; Muratov, E.N.; Mescheriakov, A.K. Investigation of anticancer activity of macrocyclic Schiff bases by means of 4D-QSAR based on simplex representation of molecular structure. SAR QSAR Environ. Res. 2005, 16, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Shingare, M.S.; Ingle, D.B. Synthesis of pyrimidine Schiff bases as anticancer agents. J. Indian Chem. Soc. 1976, 53, 1036–1037. [Google Scholar]
- Shkawat, D.R.; Sabins, S.S.; Deliwala, C.V. Potential anticancer agents, Schiff bases from p-(3-azaspiro[5,5]undec-3-yl)benzaldehydes. Bull. Haffkine Inst. 1973, 1, 35–39. [Google Scholar]
- More, S.V.; Dongarkhadekar, D.V.; Chavan, R.N.; Jadhav, W.N.; Bhusare, S.R.; Pawar, R.P. Synthesis and antibacterial activity of new Schiff bases, 4-thiazolidinones and 2-azetidinones. J. Indian Chem. Soc. 2002, 79, 768–769. [Google Scholar] [CrossRef]
- Bhendkar, A.K.; Vijay, K.; Raut, A.W. Synthesis of some novel Schiff bases of 2-aminopyrimidine and their antimicrobial activity. Acta Ciencia India Chem. 2004, 30, 29–32. [Google Scholar]
- Vaghasiya, Y.K.; Nair, R.S.; Baluja, M.; Chanda, S.S. Synthesis, structural determination and antibacterial activity of compounds derived from vanillin and 4-aminoantipyrine. J. Serb. Chem. Soc. 2004, 69, 991–998. [Google Scholar] [CrossRef]
- Vashi, K.; Naik, H.B. Synthesis of novel Schiff base and azetidinone derivatives and their antibacterial activity. Eur. J. Chem. 2004, 1, 272–276. [Google Scholar] [CrossRef]
- Rhodes, R.C.; Hall, H.; Beesley, S.R.; Jenkins, J.G.; Collins, D.C.; Zheng, P. Therapeutic Potentiation of the immune system by costimulatory Schiff base-forming drugs. Nature 1995, 377, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Safwat, H.M.; Ragab, F.A.; Eid, N.M.; Abdel, G.M. Synthesis, anti-tumor and antimicrobial activities of 3-chloro-9- (p-N-substituted sulfamoylphenylaminoethylene) acridines. Egyptian J. Pharm. Sci. 1988, 29, 99–110. [Google Scholar]
- Mtrei, R.; Yadawe, M.; Patil, S.A. Synthesis of biologically active p-bis(amino-5-mercapto-1,2,4-triazol-3-yl)benzene and its Schiff base: a new class of bis-triazole. Orient. J. Chem. 1996, 12, 101–102. [Google Scholar]
- Hossain, M.E.; Allam, M.N.; Begum, J.; Akbar, M.A.; Uddin, M.N.; Smith, F.E.; Hynes, R.C. The preparation, characterization, crystal structure and biological activities of some Cu(II) complexes of the 2-benzoyl pyridine Schiff bases of S-methyl-and S-benzyldithiocarbazate. Inorg. Chim. Acta. 1996, 249, 207–213. [Google Scholar] [CrossRef]
- Khan, S.A.; Siddiqui, A.A.; Shibeer, B. Analgesic activity of isatin derivatives. Asian J. Chem. 2002, 14, 1117–1118. [Google Scholar]
- Verma, M.; Pandeya, S.N.; Singh, K.N.; Stables, J.P. Anticonvulsant activity of Schiff bases of isatin derivatives. Acta Pharm. 2004, 54, 49–56. [Google Scholar] [PubMed]
- Sari, N.; Arslan, S.; Logoglu, E.; Sakiyan, L. Antibacterial Activities of some Amino acid-Schiff bases. GUJ Sci. 2003, 16, 283–288. [Google Scholar]
- Rathelot, P.; Azas, N.; El-Kashef, H.; Delmas, F.; Di Giorgio, C.; Timon-David, P.; Maldonado, J.; Vanelle, P. 1,3-Diphenylpyrazoles: synthesis and antiparasitic activities of azomethine derivatives. Eur. J. Med. Chem. 2002, 37, 671–679. [Google Scholar] [CrossRef]
- Madkour, H.; Farag, A.; Ramses, S.; Ibrahiem, N. Synthesis and fungicidal activity of new imidazoles from 2-(chloromethyl)-1 H –benzimidazole. Phosphor. Sulfur Phosphorous Silicon 2006, 181, 255–265. [Google Scholar] [CrossRef]
- Madkour, H.M.F.; Afify, A.A.E.; Abdalha, A.A.; Elsayed, G.A.; Salem, M.S. Synthetic utility of enaminonitrile moiety in heterocyclic synthesis: Synthesis of some new thienopyrimidines. Phosphor. Sulfur Phosphorous Silicon 2009, 184, 719–732. [Google Scholar]
- Nofal, Z.M.; El-Zahar, M.I.; Salem, M.A.I.; Madkour, H.M.F. Synthesis and chemoprophylactic effect of novel coumarin derivatives. Egypt J. Chem. 2005, 48, 587–604. [Google Scholar]
- Madkour, H.M.F.; Mahmoud, M.R.; Sakr, A.M.; Habashy, M.M. Synthesis and antibacterial activity of new 4H-pyrano [3,2-h]quinolines and fused derivatives. Sci. Pharm. 2001, 69, 33–52. [Google Scholar] [CrossRef]
- Madkour, H.M.F.; Salem, M.A.I.; Soliman, E.A.; Mahmoud, N.F.H. A facile one-pot synthesis and antibacterial activity of aziridines and thiazines from 1,3-diarylprop-2-enones. Phosphor. Sulfur Phosphorous Silicon 2001, 170, 15–28. [Google Scholar] [CrossRef]
- Salem, M.A.I.; Madkour, H.M.F.; Soliman, E.A.; Mahmoud, N.F.H. Synthesis of bactericides via carbon nucleophilic addition on 1,3-diarylprop-2-enones as michael acceptors. Heterocycles 2000, 53, 1129–1143. [Google Scholar] [CrossRef]
- Mahmoud, M.R.; Madkour, H.M.F. Reactions of 3-3-chlorophenyl-1-4-(3,4-methylenedioxybenzylidene)aminophenylprop-2-enone with some nucleophiles. Synth. Commun. 1996, 26, 3799–3808. [Google Scholar] [CrossRef]
- Sobanov, A.A.; Zolotukhin, A.V.; Galkina, I.V.; Galkin, V.I.; Cherkasov, R.A. Kinetics and mechanism of the Pudovik reaction in the azomethine series: III. Acid-catalyzed hydrophosphorylation of imines. Russ. J. Gen. Chem. 2006, 76, 421–429. [Google Scholar] [CrossRef]
- Neuvonen, H.; Neuvonen, K.; Fülöp, F. Substituent cross-interaction effects on the electronic character of the C=N bridging group in substituted benzylidene anilines − Models for molecular cores of mesogenic compounds. A 13C-NMR study and comparison with theoretical results. J. Org. Chem. 2006, 71, 3141–3148. [Google Scholar] [CrossRef] [PubMed]
- Montalvo-Gonza´lez, R.; Ariza-Castolo, A. Molecular structure of di-aryl-aldimines by multinuclear magnetic resonance and X-ray diffraction. J. Mol. Struct. 2003, 655, 375–389. [Google Scholar] [CrossRef]
- Subudhi, B.B.; Satpathy, S.; Bhatta, D.; Pradhan, D. Synthesis of some 2-(R, R')-3-(p-nitro phenyl)-thiazolidinone as potent antifungal agents. J. Teach. Res. Chem. 2005, 12, 42–45. [Google Scholar]
- Sain, B.; Thyagarajan, G.; Sandhu, J.S. Cycloaddition reactions of meso-ionic oxazolone with cinnamaldehyde anils. Can. J. Chem. 1980, 58, 2034–2037. [Google Scholar] [CrossRef]
- Youssef, M.S.K. Synthesis of antimicrobial heteroaryl-substituted-1,2,3-triazolines via the reaction of diazomethane with anils and mixed azines of thiophenealdehyde and/or isatin. J. Chem. Technol. Biotechnol. 1981, 31, 363–367. [Google Scholar] [CrossRef]
- Zhai, L.; Chen, M.; Blom, J.; Teander, T.G.; Christensen, S.B.; Karazmi, A. The antileishmanial acitivity of novel oxygenated chalcones and their mechanism of action. Antimicrob. Agents Chemother. 1999, 43, 793–803. [Google Scholar] [CrossRef]
- Choudhary, M.I.; Dur-e-Shahwar Parveen, Z.; Jabbar, A.; Ali, I.; Atta-Ur-Rahman. Antifungal steroidal lactones from Withania coagulance. Phytochemistry 1995, 40, 1243–1246. [Google Scholar] [PubMed]
- Janaki, S.; Vijayasekaram, V. Antifungal activities of aglaia roxburghiana (W & A). Biomedicine. 1998, 18, 86–89. [Google Scholar]
- Alves, T.M.A.; Silva, A.F.; Brandao, M.; Grandi, T.S.M.; Smania, E.F.A.; Smania, A., Jr.; Zani, C.L. Antibacterial xanthones from Kielmeyera variabilis mart. (Clusiaceae). Mem. Inst. Oswaldo. Cruz. 2000, 95, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Antić, N.; Dakić, I.; Švabić-Vlahović, M. In vitro antimicrobial activity of propolis and synergism between propolis and antimicrobial drugs. Microbiol. Res. 2003, 158, 353–357. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 1-18 are available from the authors. |
Compd. | Color | Moleculara formula (Mol. Mass) | Mp (°C) (recryst. solvent)b | Yield (%) | IR (cm−1) | ||
---|---|---|---|---|---|---|---|
N=C | Azomethine C-H | Substituent | |||||
1 | Pale yellow | C13H10ClN [34] (215.05) | 72-4 (L.P) | 82 | 1621 | 2874, 1352 | - |
2 | Yellow | C13H9ClN2O2 [35] (260.04) | 140-42 (L.P) | 74 | 1625 | 1333 | 1505, 1376(NO2) |
3 | Brown | C11H9NO [36] (171.07) | 106 d (B) | 79 | 1605 | 2850, 1328 | 3360(OH) |
4 | Brown | C11H8N2O3 [37] (216.05) | 196-98 (EtOH) | 68 | 1592 | 1285 | 1535, 1339(NO2) |
5 | Pale orange | C14H12N2OH (272.08) | 148-50 (L.P) | 64 | 1628 | 1325 | 3354–3480(OH) 1544, 1342 (NO2) |
6 | Pale yellow | C14H13NO2 (227.09) | 155-57 (L.P) | 72 | 1621 | 1388 | 3088 broad(OH) |
7 | Orange | C15H12N2O2 (252.09) | 133d (MeOH) | 65 | 1592 | 1300 | 1512, 1335(NO2) |
8 | Pale brown | C15H13N (207.10) | 100-02 (MeOH) | 66 | 1623 | 1375 | - |
9 | Orange | C13H10N2O3 (242.07) | 162-64 (L.P) | 59 | 1632 | 1338 | 1562, 1347 (NO2), 3150 (OH) |
10 | Pale brown | C17H12ClN (265.07) | 107-09 (MeOH) | 78 | 1637 | 1391 | - |
11 | Brown | C18H15NO2 (277.11) | 114-16 (B) | 76 | 1621 | 1381 | 3048(OH) |
12 | Pale Brown | C14H12ClNO (245.06) | 136-37 (MeOH) | 87 | 1629 | 2838, 1364 | 2838, 2895 (CH3) |
13 | Pale Brown | C15H15NO3 ( 257.11) | 257-59 (MeOH) | 70 | 1621 | 2954, 1378 | 3000 (broad OH), 2954, 2982 (CH3) |
14 | Greenish White | C14H13NO2 (227.09) | 85-87 (MeOH) | 67 | 1637 | 2964, 1362 | 3610(OH), 2964, 2996 (CH3) |
15 | White | C14H12ClN (229.07) | 127-29 (MeOH) | 79 | 1622 | 2929, 1354 | 2854, 2925 (CH3) |
16 | White | C14H13NO (211.10) | 96-98 (MeOH) | 67 | 1615 | 2920, 1366 | 3100 (OH), 2920 (CH3) |
17 | Pale Orange | C16H15N [38] (221.12) | 76-77 (MeOH) | 71 | 1627 | 2912, 1379 | 2912 (CH3) |
18 | Pale Yellow | C11H8N2O2S [39] (232.03) | 135-37 (MeOH) | 55 | 1612 | 1323 | 1543, 1341 (NO2) |
Compd. | 1H-NMR |
---|---|
5 | 9.45 (s, 1H, -OH, exchangeable), 8.36 (s, 1H, benzylidenimine H), 8.08-6.90 (m, 7H, Ar-H), 3.80 (s, 3H, -OCH3). |
6 | 9.75 (s, 1H, -OH, exchangeable), 8.43 (s, 1H, -CH=N), 7.52-6.88 (m, 8H, Ar-H), 3.84 (s, 3H, -OCH3). |
7 | 8.10 (m, 1H, -CH=N), 7.60-6.95 (m, 11H, Ar-H and olefinic H). |
8 | 8.25 (d, 1H, benzylideimin H, J = 5.36 Hz), 7.54-7.07 (m, 12H, Ar-H and olefinic H). |
9 | 12.27 (s, 1H, OH, exchangeable), 8.99 (s, 1H, -CH=N), 8.32-6.98 (m, 7H, Ar-H). |
10 | 8.73 (s, 1H, benzylidenimine H), 8.09-7.23 (m, 11H, Ar-H). |
11 | 9.76 (s, 1H, OH, exchangeable), 8.53 (s, 1H, benzylidenimine H), 8.29-6.92 (m, 10H, Ar-H), 3.89 (s, 3H, -OCH3). |
12 | 8.64 (s, 1H, -CH=N), 7.93-6.97 (m, 8H, Ar-H), 3.77 (s, 3H, -OCH3). |
13 | 9.60 (s, 1H, OH, exchangeable), 8.44 (s, 1H, -CH=N), 7.49-6.86 (m, 7H, Ar-H), 3.83 and 3.76 (2s, 6H, 2 -OCH3). |
14 | 13.38 (s, 1H, OH, exchangeable), 8.59 (s, 1H, benzylidenimine H), 7.36-6.89 (m, 7H, Ar-H), 3.82 (s, 3H, -OCH3) |
15 | 8.41 (s, 1H, -CH=N),7.83-7.11 (m, 8H, Ar-H), 2.36 (s, 3H, -CH3) |
16 | 13.19 (s, 1H, OH, exchangeable), 8.94 (s, 1H, -CH=N), 7.63-6.93 (m, 7H, Ar-H), 2.33 (s, 3H, -CH3). |
Compd | 13C-NMR |
---|---|
5 | 160.0, 154.2, 152.4, 147.3, 146.3, 131.0, 125.5, 125.2, 123.2, 115.9, 112.3, 56.1. |
6 | 160.2, 152.4, 152.0, 147.3, 131.1, 129.9, 127.2, 125.5, 122.3, 115.9, 112.3, 56.1. |
7 | 163.7, 158.6, 146.4, 135.2, 133.3, 128.5, 128.5, 127.9, 125.2, 123.2, 119.8. |
8 | 163.7, 152.4, 135.2, 133.3, 130.0, 128.6, 128.5, 127.9, 127.2, 122.3, 119.9. |
9 | 161.1, 160.0, 154.2, 146.4, 132.4, 132.1, 125.2, 123.2, 121.4, 120.5, 117.8. |
10 | 160.0, 151.9, 136.6, 135.0, 134.5, 130.5, 128.9, 128.6, 128.3, 127.8, 126.8, 126.3, 115.2. |
11 | 160.0, 152.2, 151.9, 147.9, 147.3, 135.0, 131.1, 128.5, 128.3, 127.8, 126.7, 126.3, 125.5, 115.9, 115.1, 112.3, 56.1. |
12 | 160.0, 159.1, 144.3, 136.5, 134.5, 130.6, 128.8, 122.1, 115.6, 55.8. |
13 | 159.9, 159.1, 152.4, 147.3, 144.3, 131.1, 125.5, 115.9, 115.6, 122.1, 112.3, 56.1, 55.8. |
14 | 161.1, 160.1, 159.1, 144.3, 132.4, 132.1, 122.1, 121.4, 120.4, 117.8, 115.5, 55.8. |
15 | 160.1, 149.1, 136.9, 136.5, 134.5, 130.6, 130.3, 128.9, 122.2, 21.3. |
16 | 161.1, 159.9, 149.1, 136.8, 132.4, 132.1, 130.3, 122.2, 121.4, 120.5, 117.7, 21.3. |
Compd. | m/z (% Relative abundance) |
---|---|
5 | 272 (M+., 4.25), 227 (2.34), 139 (4.85), 138 (70.25), 107 (76.60), 92 (48.80), 91 (6.91), 65 (100.00). |
6 | 227 (M+., 98.26), 211 (21.66), 166 (14.45), 154 (7.12), 139 (5.12), 104 (22.42), 77 (100.00) |
7 | 252 (M+., 27.28), 251 (M-1⎤+., 83.41), 205 (56.73), 178 (4.88), 149 (4.88), 138 (54.55), 115 (70.16), 92 (48.50), 91 (47.95), 65 (100.00) |
8 | 207 (M+., 33.52), 206 (M-1⎤+., 100.00), 178 (3.25), 128 (13.57), 115 (18.72), 77 (90.33). |
9 | 242 (M+., 96.65), 212 (13.38), 195 (37.11), 167 (29.72), 151 (5.91), 120 (44.48), 76 (100.00) |
10 | 267 (M+2⎤+., 20.42), 266 (M+1⎤+., 20.79), 265 (M+., 60.68), 230 (2.89), 202 (3.48), 154 (23.00), 127 (100.00), 77 (29.47), 51 (9.14). |
11 | 277 (M+., 100.00), 261 (7.13), 216 (6.07), 204 (5.90), 178 (3.99), 154 (19.97), 127 (80.53), 101 (11.97), 85 (44.01), 83 (69.57), 77 (27.60). |
12 | 247 (M+2⎤+., 26.19), 246 (M+1⎤+., 15.23), 245 (M+., 77.99), 230 (100.00), 201 (10.17), 167 (27.80), 149 (5.64), 139 (10.67), 114 (4.26), 77 (35.29), 63 (45.11). |
13 | 257 (M+., 100.00), 242 (85.72), 227 (3.73), 198 (5.24), 170 (15.75), 154 (7.33), 134 (6.16), 115 (7.02), 77 (4.02), 64 (19.33). |
14 | 228 (M+1⎤+., 16.62), 227 (M+., 100.00), 212 (71.79), 183 (4.33), 154 (3.40), 128 (5.33), 105 (3.08), 77 (55.04), 65 (38.15). |
15 | 231 (M+2⎤+., 30.49), 230 (M+1⎤+., 33.41), 229 (M+., 90.60), 193 (2.89), 165 (4.57), 150 (2.05), 118 (22.99), 91 (100.00), 77 (9.79), 65 (61.60). |
16 | 211 (M+., 100.00), 210 (M-1⎤+., 76.87), 167 (6.29), 120 (12.86), 118 (8.68), 91 (80.65), 65 (74.49). |
Compound | L. major a |
---|---|
1 | 0.77 ± 0.09 |
2 | - |
3 | - |
4 | 0.65 ± 0.01 |
5 | - |
6 | 0.73 ±0.16 |
7 | - |
8 | - |
9 | 0.59 ± 0.07 |
10 | 0.61 ± 0.27 |
11 | - |
12 | 0.57 ±0.11 |
13 | 0.63 ± 0.04 |
14 | 0.68 ±0.12 |
15 | 0.66 ±0.18 |
16 | 0.81 ± 0.03 |
17 | 0.62 ± 0.08 |
18 | - |
Standard Drug IC50 (µg/mL± S.D) | |
Amphotericin B | 0.56 ± 0.20 |
Compound | C. albicans | A. flavus | M. canis | F. solani | C. glabrata |
---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 20a | 35 | 0 |
5 | 0 | 0 | 30 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 60 | 40 | 0 |
10 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 35 | 0 |
12 | 0 | 0 | 35 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 20 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
17 | 0 | 40 | 0 | 15 | 0 |
18 | 0 | 0 | 0 | 20 | 0 |
Std. Drug MIC (mg/mL) | |||||
Miconazole | 110.8 | - | 98.4 | 73.25 | 110.28 |
Amphotericin B | - | 20.0 | - | - | - |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Al-Kahraman, Y.M.S.A.; Madkour, H.M.F.; Ali, D.; Yasinzai, M. Antileishmanial, Antimicrobial and Antifungal Activities of Some New Aryl Azomethines. Molecules 2010, 15, 660-671. https://doi.org/10.3390/molecules15020660
Al-Kahraman YMSA, Madkour HMF, Ali D, Yasinzai M. Antileishmanial, Antimicrobial and Antifungal Activities of Some New Aryl Azomethines. Molecules. 2010; 15(2):660-671. https://doi.org/10.3390/molecules15020660
Chicago/Turabian StyleAl-Kahraman, Yasser M.S.A., Hassan. M.F. Madkour, Dildar Ali, and Masoom Yasinzai. 2010. "Antileishmanial, Antimicrobial and Antifungal Activities of Some New Aryl Azomethines" Molecules 15, no. 2: 660-671. https://doi.org/10.3390/molecules15020660