Radical-Scavenging Activity and Cytotoxicity of p-Methoxyphenol and p-Cresol Dimers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Radical-scavenging activity
A) AIBN (2,2'-azobisisobutyronitrile)- MMA (methyl methacrylate) system | |||
---|---|---|---|
aPhenols | bn | cRpinh/Rpcon | dkinh/kp |
p-Cresol ( 4-methylphenol, 1a) | 1.6 | 0.9* | 18.4 |
p-Cresol dimer (2a) | 3.0 | 1.0 | 9.2 |
2-t-Butyl-4-methylphenol (BMP) | 2.3 | 0.9* | 14.5 |
2,6-di-t-Butyl-4-methylphenol (BHT) | 1.7 | 1.0 | 16.5 |
p-Methoxyphenol (1b) | 2.5 | 1.0 | 14.1 |
p-Methoxyphenol dimer (2b) | 2.8 | 0.8** | 11.5 |
2-t-Butyl-4-methoxyphenol (BHA) | 2.5 | 0.9* | 10.6 |
B) BPO (benzoyl peroxide)-MMA system | |||
p-Cresol ( 4-methylphenol, 1a) | 1.5 | 1.0 | 16.6 |
p-Cresol dimer (2a) | 3.3 | 1.1 | 4.2 |
2-t-Butyl-4-methylphenol (BMP) | 1.8 | 1.0 | 9.3 |
2,6-di-t-Butyl-4-methylphenol (BHT) | 1.9 | 1.0 | 8.6 |
p-Methoxyphenol (1b) | 2.4 | 0.8** | 8.2 |
p-Methoxyphenol dimer (2b) | 2.8 | 0.9* | 5.7 |
2-t-Butyl-4-methoxyphenol (BHA) | 2.2 | 1.0 | 6.6 |
2.2. Cytotoxicity
3. Experimental
3.1. Materials and methods
3.2. Synthesis of phenol dimers
3.3. Induction time (IT) and initial rate of polymerization (Rp)
3.4. Measurement of stoichiometric factor (n)
3.5. Measurement of the inhibition rate constant (kinh)
3.6. Cytotoxicity
4. Conclusions
References and Notes
- Andersen, A. Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m- cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o- cymen-5-ol, and carvacrol. Int. J. Toxicol. 2006, 25, 29–127. [Google Scholar] [CrossRef]
- Asakura, K.; Honda, E.; Osanai, S. Selective oxidative coupling of p-cresol producing an ortho-ortho direct-linked dimer. Chem. Lett. 1995, 24, 583–584. [Google Scholar]
- Asakawa, E.; Hirose, M.; Hagiwara, A.; Takahashi, S.; Ito, N. Carcinogenicity of 4-methoxyphenol and 4-methylcatechol in F344 rats. Int. J. Cancer. 1994, 56, 146–152. [Google Scholar]
- Shibata, M.; Hirose, M.; Kagawa, M.; Boonyaphiphat, P.; Ito, N. Enhancing effect of concomitant L-ascorbic acid administration on BHA-induced forestomach carcinogenesis in rats. Carcinogenesis 1993, 14, 275–280. [Google Scholar] [CrossRef]
- Danner, D.J.; Brignac, P.J., Jr.; Arceneaux, D.; Patel, V. The oxidation of phenol and its reaction product by horseradish peroxidase and hydrogen peroxide. Arch. Biochem. Biophys. 1973, 156, 759–763. [Google Scholar]
- Sartori, G.; Maggi, R.; Bigi, F.; Arienti, A.; Casnati, G.; Bocelli, G.; Mori, G. Oxidative coupling of dichloroaluminium phenolates: Highly selective synthesis of hydroxylated bi- and tetraaryls. Tetrahedron 1992, 48, 9483–9494. [Google Scholar] [CrossRef]
- Sgaragli, G.; Corte, L.D.; Puliti, R.; De Sarlo, F.; Francalanci, R.; Guarna, A. Oxidation of 2-t-butyl-4-methoxyphenol (BHA) by horseradish and mammalian peroxidase systems. Biochem. Pharmacol. 1980, 29, 763–769. [Google Scholar]
- Fujisawa, S.; Atsumi, T.; Kadoma, Y.; Sakagami, H. Antioxidant and prooxidant action eugenol-related compounds and its cytotoxicity. Toxicology 2002, 177, 39–54. [Google Scholar]
- Murakami, Y.; Shoji, M.; Hirata, A.; Tanaka, S.; Hanazawa, S.; Yokoe, I.; Fujisawa, S. An ortho dimer of butylated hydroxyanisole inhibits nuclear factor kappa B activation and gene expression of inflammatory cytokines in macrophages stimulated by Porphyromonas gingivalis fimbriae. Arch. Biochem. Biophys. 2006, 449, 171–177. [Google Scholar]
- Murakami, Y.; Ishii, H.; Hoshina, S.; Takada, N.; Ueki, A.; Tanaka, S.; Kadoma, Y.; Ito, S.; Machino, M.; Fujisawa, S. Antioxidant and cyclooxygenase-2-inhibiting activity of 4,4’-biphenol, 2,2’-biphenol and phenol. Anticancer Res. 2009, 29, 2403–2410. [Google Scholar]
- Leenen, R.; Roodenburg, A.J.; Vissers, M.N.; Schuurbiers, J.A.; van Putte, K.P.; Wiseman, S.A.; van de Put, F.H. Supplementation of plasma with olive oil phenols and extracts: influence on LDL oxidation. J. Agric. Food Chem. 2002, 50, 1290–1297. [Google Scholar]
- Zhang, J.; Stanley, R.A.; Melton, L.D.; Skinner, M.A. Inhibition of lipid oxidation by phenolic antioxidants in relation to their physicochemical properties. Pharmacologyonline 2007, 1, 180–189. [Google Scholar]
- Lacikova, L.; Jancova, M.; Muselik, J.; Masterova, I.; Grancai, D.; Fickova, M. Antiproliferative, cytotoxic, antioxidant activity and polyphenols contents in leaves of four Staphylea L. specie. Molecules 2009, 14, 3259–3267. [Google Scholar] [CrossRef]
- Modak, B.; Rojas, M.; Torres, R.; Rodilla, J.; Luebert, F. Antioxidant activity of a new aromatic geranyl derivative of the resinous exudates from Heliotropium glutinosum Phil. Molecules 2007, 12, 1057–1063. [Google Scholar]
- Ertan Anli, R.; Vural, N. Antioxidant phenolic substances of Turkish red wines from different wine regions. Molecules 2009, 14, 289–297. [Google Scholar] [CrossRef]
- Roche, M.; Dufour, C.; Mora, N.; Dangles, O. Antioxidant activity of olive phenols: mechanistic investigation and characterization of oxidation products by mass spectrometry. Org. Biomol. Chem. 2005, 3, 423–430. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Ozyürek, M.; Celik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Ozyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar]
- Fujisawa, S.; Kadoma, Y.; Yokoe, I. Radical-scavenging activity of butylated hydroxytoluene (BHT) and its metabolites. Chem. Phys. Lipids 2004, 130, 189–195. [Google Scholar] [CrossRef]
- Kadoma, Y.; Atsumi, T.; Okada, M.; Ishihara, M.; Yokoe, I.; Fujisawa, S. Radical-scavenging activity of natural methoxyphenols vs. synthetic ones using the induction period. Molecules 2007, 12, 130–138. [Google Scholar] [CrossRef]
- Kadoma, Y.; Ito, S.; Yokoe, I.; Fujisawa, S. Comparative study of the alkyl and peroxy radical-scavenging activity of 2-t-butyl-4-methoxyphenol (BHA) and its dimer and their theoretical parameters. In Vivo 2008, 22, 289–296. [Google Scholar]
- Odian, G.G. Principles of Polymerization, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; p. 270. [Google Scholar]
- Horswill, E.C.; Howards, J.A.; Ingold, K.U. he oxidation of phenols. III. The stoichiometries for the oxidation of some substituted phenols with peroxy radicals. Can. J. Chem. 1966, 44, 985–991. [Google Scholar]
- Kadoma, Y.; Ito, S.; Atsumi, T.; Fujisawa, S. Mechanisms of cytotoxicity of 2- or 2,6-di-tert-butylphenols and 2-methoxyphenols in terms of inhibition rate constant and a theoretical parameter. Chemosphere 2009, 74, 626–632. [Google Scholar] [CrossRef]
- Hewgill, F.R.; Hewitt, D.G. Oxidation of alkoxyphenol. Part X. The reaction of 2,2’-dihydroxy-5,5’-dimethoxy-3, 3’-di-t-butylbiphenyl with lead tetra acetate. J. Chem. Soc. C 1967, 726–730. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds are available from the authors.
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kadoma, Y.; Murakami, Y.; Ogiwara, T.; Machino, M.; Yokoe, I.; Fujisawa, S. Radical-Scavenging Activity and Cytotoxicity of p-Methoxyphenol and p-Cresol Dimers. Molecules 2010, 15, 1103-1112. https://doi.org/10.3390/molecules15031103
Kadoma Y, Murakami Y, Ogiwara T, Machino M, Yokoe I, Fujisawa S. Radical-Scavenging Activity and Cytotoxicity of p-Methoxyphenol and p-Cresol Dimers. Molecules. 2010; 15(3):1103-1112. https://doi.org/10.3390/molecules15031103
Chicago/Turabian StyleKadoma, Yoshinori, Yukio Murakami, Takako Ogiwara, Mamoru Machino, Ichiro Yokoe, and Seiichiro Fujisawa. 2010. "Radical-Scavenging Activity and Cytotoxicity of p-Methoxyphenol and p-Cresol Dimers" Molecules 15, no. 3: 1103-1112. https://doi.org/10.3390/molecules15031103
APA StyleKadoma, Y., Murakami, Y., Ogiwara, T., Machino, M., Yokoe, I., & Fujisawa, S. (2010). Radical-Scavenging Activity and Cytotoxicity of p-Methoxyphenol and p-Cresol Dimers. Molecules, 15(3), 1103-1112. https://doi.org/10.3390/molecules15031103