QSAR Models for Reproductive Toxicity and Endocrine Disruption Activity
Abstract
:1. Introduction
2. Modeling Strategies
3. Examples
3.1. Prediction of Developmental Toxicity with CAESAR Model
3.2. Counter Propagation Models for Categorization of Endocrine Disrupters
- E: Endocrine disruptor—At least one study provides evidence of endocrine disruption in intact organism.
- P: Potential Endocrine disruptor – In vitro data indicated potential endocrine disruption in intact organisms.
- U: Nonendocrine disruptor – No certain evidence for non-ED. Category 3B – Some evidence are available, but the evidence is insufficient for identification.
- N: Certain evidence for non-ED.
3.3. QSAR Modeling of Relative Binding Affinity to Rat Estrogen Receptor
3.4. Receptor Dependent Models
4. Conclusions
Acknowledgements
References
- OECD. Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test. In OECD Guideline of Testing of Chemicals 422; OECD Publication Office: Paris, France, 1996. [Google Scholar]
- OECD. Reproduction/Developmental Toxicity Screening Test. In OECD Guideline of Testing of Chemicals 421; OECD Publication Office: Paris, France, 1995. [Google Scholar]
- OECD. One-Generation Reproduction Toxicity Study. In OECD Guideline of Testing of Chemicals 415; OECD Publication Office: Paris, France, 1983. [Google Scholar]
- OECD. Two-Generation Reproduction Toxicity Study. In OECD Guideline of Testing of Chemicals 416; OECD Publication Office: Paris, France, 2001. [Google Scholar]
- OECD. Developmental Neurotoxicity Study. In OECD Guideline of Testing of Chemicals 426; OECD Publication Office: Paris, France, 2003; Draft document. [Google Scholar]
- OECD. The Uterotrophic Bioassay in Rodents: a short-term screening test for oestrogenic properties. In Draft OECD Guideline for the Testing of Chemicals; OECD Publication Office: Paris, France, 2007. [Google Scholar]
- OECD. Guidance Document on the Weanling Hershberger Bioassay in Rats: A Short-term Screening Assay for (Anti)Androgenic Properties. In OECD Environment, Health and Safety Publications, Series on Testing and Assessment No. 115; OECD Publication Office: Paris, France, 2009. [Google Scholar]
- OECD. Guidance on Grouping of Chemicals. In OECD Environment, Health and Safety Publications, Series on Testing and Assessment No. 80; OECD Publication Office: Paris, France, 2007. [Google Scholar]
- Cronin, M.T.D.; Worth, A.P. (Q)SAR for predicting effects relating to reproductive toxicity. QSAR Comb. Sci. 2008, 27, 91–100. [Google Scholar] [CrossRef]
- Asikainen, A.; Kolehmainen, M.; Ruuskanen, J.; Tuppurainen, K. Structure-based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods. Chemosphere 2006, 62, 658–673. [Google Scholar] [CrossRef] [PubMed]
- Saliner, A.G.; Netzeva, T.I.; Worth, A.P. Prediction of estrogenicity: validation of a classification model. SAR QSAR Environ. Res. 2006, 17, 195–223. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guidance Document On The Validation Of (Quantitative) Structure-Activity Relationships [(Q)SAR] Models. In OECD Environment, Health and Safety Publications, Series on Testing and Assessment No. 69; OECD Publication Office: Paris, France, 2007. [Google Scholar]
- Devillers, J.; Marchand-Geneste, N.; Dore, J.C.; Porcher, J.M.; Poroikov, V. Endocrine disruption profile analysis of 11,416 chemicals from chemometrical tools. SAR QSAR Environ. Res. 2007, 18, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Arena, V.C.; Sussman, N.B.; Mazumdar, S.; Yu, S.; Macina, O.T. The utility of Structure-activity relationship (SAR) models for prediction and covariate selection in developmental toxicity: comparative analysis of logistic regression and decision tree models. SAR QSAR Environ. Res. 2004, 15, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bolčič-Tavčar, M.; Vračko, M. Assessing the Reproductive Toxicity of some (Con)azole Compounds Using Structure-Activity Relationship (SAR) Approach. SAR & QSAR Environ. Res. 2010. In Press. [Google Scholar]
- Grindon, C.; Combes, R.; Cronin, M.T.D.; Roberts, D.W.; Garrod, J.F. Integrated decision-tree testing strategies for developmental and reproductive toxicity with respect to the requirements of the EU REACH legislation. Altern. Lab. Anim. 2008, 36, 65–80. [Google Scholar] [PubMed]
- Grindon, C.; Combes, R.; Cronin, M.T.D.; Roberts, D.W.; Garrod, J.F. Integrated decision-tree testing strategies for developmental and reproductive toxicity with respect to the requirements of the EU REACH legislation. Altern. Lab. Anim. 2008, 36, 123–138. [Google Scholar] [PubMed]
- Harju, M.; Hamers, T.; Kamstra, J.H.; Sonneveld, E.; Boon, J.P.; Tysklind, M.; Andersson, P.L. Quantitative structure-activity relationship modeling on In vitro endocrine effects and metabolic stability involving 26 selected brominated flame retardants. Environ. Toxicol. Chem. 2007, 26, 816–826. [Google Scholar] [CrossRef] [PubMed]
- Panaye, A.; Doucet, J.P.; Devillers, J.; Marchand-Geneste, N.; Porcher, J.M. Decision trees versusu support vector machine classification of androgen receptor ligands. SAR QSAR Environ. Res. 2008, 19, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Jensen, G.E.; Niemela, J.R.; Wedebye, E.B.; Nikolv, N.G. QSAR models for reproductive toxicity and endocrine disruption in regulatory use – a preliminary investigation. SAR QSAR Environ. Sci. 2008, 19, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.M.; Andresson, P.L.; Lamoree, M.H.; Leonards, P.E.G.; van Leeuwen, S.P.; Hamers, J.T. Competitive binding of poly- and perfluorinated compounds to the thyroid hormone transport protein transthyretin. Toxicol. Sci. 2009, 109, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Schmieder, P.; Mekenyan, O.; Bradbury, S.; Veith, G. QSAR prioritization of chemical inventories for endocrine disruptor testing. Pure Appl. Chem. 2003, 75, 2389–2396. [Google Scholar] [CrossRef]
- Lill, M.A.; Dobler, M.; Vedani, A. In silico prediction of receptor-mediated environmental toxic phenomena – Application to endocrine disruption. SAR QSAR Environ. Res. 2005, 16, 149–169. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Papa, E.; Gramatica, P. Evaluation and QSAR modeling on multiple endpoints of estrogen activity based on different bioassays. Chemosphere 2008, 70, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Papa, E.; Gramatica, P. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chem. Res. Toxicol. 2006, 19, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Papa, E.; Walker, J.D.; Gramatica, P. In silico screening of estrogen-like chemicals based on different nonlinear classification models. J. Mol. Graph. Model. 2007, 26, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yao, X.; Gramatica, P. The Applications of Machine Learning Algorithms in the Modeling of Estrogen-Like Chemicals. Comb. Chem. High Throughput Screen. 2009, 12, 490–496. [Google Scholar] [CrossRef]
- Akahori, Y.; Nakai, M.; Yakabe, Y.; Takatsuki, A.; Mizutani, M.; Matsuo, M.; Shimohigashi, Y. Two-step models to predict binding affinity of chemicals to the human estrogen receptor alpha by three-dimensional quantitative structureactivity relationship (3D-QSAR) using receptor-ligand docking simulation. SAR QSAR Environ. Res. 2005, 16, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Vedani, A.; Dobler, M.; Lill, M.A. Virtual test kits for predicting harmful effects triggered by drugs and chemicals mediated by specific proteins. ALTEX 2005, 22, 123–134. [Google Scholar] [PubMed]
- Devillers, J. (Ed.) Endocrine Disruption Modeling; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Benigni, R.; Bossa, C. Predictivity of QSAR. J. Chem. Inf. Model. 2008, 48, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Computer Assisted Evaluation of Substances According to Evaluation. Available online at: http://www.caesar-project.eu/ (accessed on 15 March 2010).
- EC. Communication from the Commission to the Council and the European Parliament on the Implementation of the Community Strategy for Endocrine Disrupters – A Range of Substances Suspected Suspected of Interfering with the Hormone Systems of Humans and Wildlife, COM 262 Final, Brussels, 14 June 2001. Available online at http://ec.europa.eu/environment/docum/01262_en.htm (accessed on March 19, 2010).
- Roncaglioni, A.; Novič, M.; Vračko, M.; Benfenati, E. Classification of potential endocrine disrupters on the basis of molecular structure using a nonlinear modeling method. J. Chem. Inf. Comput. Sci. 2004, 44, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Vračko, M.; Novič, M.; Zupan, J. Study of structure-toxicity relationship by a counterpropagation neural network. Anal. Chim. Acta 1999, 384, 319–332. [Google Scholar] [CrossRef]
- Vračko, M.; Bandelj, V.; Barbieri, P.; Benfenati, E.; Chaudhry, Q.; Cronin, M.T.D.; Devillers, J.; Gallegos, A.; Gini, G.; Gramatica, P.; Helma, C.; Mazzatorta, P.; Neagu, D.; Netzeva, T.; Pavan, M.; Patlewicz, G.; Randić, M.; Tsakovska, I.; Worth, A. Validatin of counter propagation neural network models for predictive toxicology according to the OECD principles. A case study. SAR QSAR Environ. Res. 2006, 17, 265–284. [Google Scholar] [CrossRef] [PubMed]
- ICPS-WHO. International Program on Chemical Safety, Global Assessment of the State-of-the-Science of Endocrine Disruptors; Damstra, T., Barlow, S., Bergman, A., Kavlock, R., Van Der Kraak, G., Eds.; WHO: Geneva, Swizerland, 2002; pp. 89–105. [Google Scholar]
- Marini, F.; Rocagnioli, A.; Novic, M. Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders. J. Chem. Inf. Model 2005, 45, 1507–1519. [Google Scholar] [CrossRef] [PubMed]
- Novič, M.; Vračko, M. Kohonen and counterpropagation neural networks employed for modeling endocrine disruptors. In Endocrine Disruption Modeling; James Devillers, Ed.; CRC, Taylor & Francis: Boca Raton, FL, USA, 2009; pp. 199–234. [Google Scholar]
- Kupier, G.G.J.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; Van der Saag, P.T.; Van der Burg, P.; Gustafsson, J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor b. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef] [PubMed]
- Harris, H.A.; Bapat, A.R.; Gonder, D.S.; Frail, D.E. The ligand binding profiles of estrogen receptors alpha and beta are species dependent. Steroids 2002, 67, 379–384. [Google Scholar] [CrossRef]
- Boriani, E.; Spreafico, M.; Benfenati, E.; Novič, M. Structural features of diverse ligands influencing binding affinities to estrogen a and estrogen b receptors. Part I. Molecular descriptors calculated from minimal energy conformations of isolated ligands. Mol. Divers. 2007, 11, 153–169. [Google Scholar] [CrossRef] [PubMed]
- Spreafico, M.; Boriani, E.; Benfenati, E.; Novič, M. Structural features of diverse ligands influencing binding affinities to estrogen a and estrogen b receptors. Part II. Molecular descriptors calculated from conformation of the ligands in the complex resulting from previous docking study. Mol. Divers. 2007, 11, 171–181. [Google Scholar] [CrossRef] [PubMed]
Anthracene | Fluorene | Fluoranthene | Triphenylene | |
---|---|---|---|---|
Prediction | Tox. | NON-Tox. | Tox. | NON-Tox. |
Phenyltoloxamine T | 0.954 | 0.962 | ||
Aminacrine NT | 0.949 | 0.948 | 0.920 | |
Diphenylhydramine NT | 0.948 | |||
Alprazolam T | 0.942 | 0.927 | ||
Promethazine T | 0.940 | 0.962 | ||
Dotheipin T | 0.936 | 0.957 | ||
Imipramine T | 0.954 | |||
Amitriptyline T | 0.946 | |||
Chlorotrianisene T | 0.929 | 0.951 | ||
Phenolphthalein T | 0.925 | 0.947 | ||
Clomiphene T | 0.915 | 0.952 | ||
Clotrimazole NT | 0.911 | 0.964 | ||
Diphenadione T | 0.943 | |||
Loperamide NT | 0.918 |
Performances | Receptor Independent Approach | Receptor Dependent Approach | |||||||
---|---|---|---|---|---|---|---|---|---|
Approach | Model | ER-α | ER-β | ER-α | ER-β | ||||
Var A* | Var R** | Var A* | Var R** | Var A* | Var R** | Var A* | Var R** | ||
Training & Test Set | Classification Error (%) | 7 | 0 | 7 | 0 | 5 | 0 | 12 | 2 |
RMS Error of Predictions of Active Compounds | 0.61 | 0.17 | 0.41 | 0.24 | 1.61 | 0.36 | 1.79 | 0.85 | |
External Set | Classification Error (%) | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 |
RMS Error of Predictions of Active Compounds | 2.43 | 2.20 | 2.34 | 1.33 | 2.12 | 5.14 | 2.83 | 1.86 |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Novič, M.; Vračko, M. QSAR Models for Reproductive Toxicity and Endocrine Disruption Activity. Molecules 2010, 15, 1987-1999. https://doi.org/10.3390/molecules15031987
Novič M, Vračko M. QSAR Models for Reproductive Toxicity and Endocrine Disruption Activity. Molecules. 2010; 15(3):1987-1999. https://doi.org/10.3390/molecules15031987
Chicago/Turabian StyleNovič, Marjana, and Marjan Vračko. 2010. "QSAR Models for Reproductive Toxicity and Endocrine Disruption Activity" Molecules 15, no. 3: 1987-1999. https://doi.org/10.3390/molecules15031987
APA StyleNovič, M., & Vračko, M. (2010). QSAR Models for Reproductive Toxicity and Endocrine Disruption Activity. Molecules, 15(3), 1987-1999. https://doi.org/10.3390/molecules15031987