Flavonoid and Leaf Gas Exchange Responses of Centella asiatica to Acute Gamma Irradiation and Carbon Dioxide Enrichment under Controlled Environment Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Total Flavonoid Content and Leaf Biomass
2.2. Leaf Gas Exchange Measurement
2.3. Determination of Lipid Oxidation (Malondialdehyde (MDA))
3. Experimental
3.1. Experimental Design
3.2. Plant Materials and Growth Chamber
3.3. Plant Harvest (Leaf Biomass)
3.4. Determination of the Total Flavonoid Content
3.5. Gas Exchange
3.6. Estimation of Lipid Oxidation (Malondialdehyde (MDA))
4. Conclusions
References and Notes
- Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Kim, J.H.; Chung, B.Y.; Kim, J.S.; Wi, S.G. Effects of in planta gamma-irradiation on growth, photosynthesis, and antioxidative capacity of red pepper (Capsicum annuum L.) plants. J. Plant Biol. 2005, 48, 47–56. [Google Scholar] [CrossRef]
- Goins, G.D.; Yorio, N.C.; Stutte, G.W.; Wheeler, R.M.; Sager, J.C. Baseline Environmental Testing of Candidate Salad Crops with Horticultural Approaches and Constraints Typical of Spaceflight; SAE Technical: Vancouver, BC, Canada, 2003. [Google Scholar]
- Rosen, C.; Fritz, V.; Gardner, G.; Hecht, S.; Carmella, S.; Kenney, P. Cabbage yield and glucosinolate concentrations as affected by nitrogen and sulfur fertility. HortScience 2005, 40, 1493–1498. [Google Scholar]
- Stutte, G.W. Process and product: Recirculating hydroponics and bioactive compounds in a controlled environment. HortScience 2006, 41, 526–530. [Google Scholar]
- Gruda, N. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit. Rev. Plant Sci. 2005, 24, 227–247. [Google Scholar] [CrossRef]
- Charron, C.S.; Sams, C.E. Glucosinolate content and myrosinase activity in rapid-cycling Brassica oleracea grown in a controlled environment. J. Am. Soc. Hort. Sci. 2004, 129(129), 321–330. [Google Scholar]
- Pagliarulo, C.; Hayden, A.; Giacomelli, G. Potential for greenhouse aeroponic cultivation of Urtica dioica. VII International Symposium on Protected Cultivation in Mild Winter Climates: Production, Pest Management and Global Competition; Workgroup Protected Cultivation in Mild Winter Climates: Kissimmee, FL, USA, November 2004; pp. 61–66. [Google Scholar]
- Veteli, T.; Kuokkanen, K.; Julkunen, R.; Roininen, H.; Tahvanainen, J. Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistry. Glob. Change Biol. 2002, 8, 1240–1252. [Google Scholar] [CrossRef]
- Wang, S.Y.; Bunce, J.A.; Maas, J. Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. J. Agric. Food Chem 2003, 51, 4315–4320. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Baek, M.H.; Chung, B.Y.; Wi, S.G.; Kim, J.S. Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds. J. Plant Biol. 2004, 47, 314–321. [Google Scholar] [CrossRef]
- Naito, K.; Kusaba, M.; Shikazono, N.; Takano, T.; Tanaka, A.; Tanisaka, T. Transmissible and nontransmissible mutations induced by irradiating Arabidopsis thaliana pollen with (gamma)-rays and carbon ions. Genetics 2005, 169, 881. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Shirasawa, K.; Takahashi, Y.; Nishimura, M.; Nishio, T. Mutant selection from progeny of gamma-ray-irradiated rice by DNA heteroduplex cleavage using brassica petiole extract. Breeding Sci. 2006, 56, 179–183. [Google Scholar] [CrossRef]
- Eroglu, Y.; Eroglu, H.E.; Ilbas, A.I. Gamma ray reduces mitotic index in embryonic roots of Hordeumvulgare L. Adv. Mar. Biol. 2007, 1, 26–28. [Google Scholar]
- Peng, Q.; Zhou, Q. Antioxidant capacity of flavonoid in soybean seedlings under the joint actions of rare earth element la (III) and ultraviolet-B stress. Biol. Trace Elem. Res. 2009, 127, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Stutte, G.W.; Eraso, I.; Rimando, A.M. Carbon dioxide enrichment enhances growth and flavonoid content of two scutellaria species. J. Am. Soc. Hort. Sci. 2008, 133, 631–638. [Google Scholar]
- Estiarte, M.; Peñuelas, J.; Kimball, B.A.; Hendrix, D.L.; Pinter, P.J., Jr.; Wall, G.W. Free-air CO2 enrichment of wheat: Leaf flavonoid concentration throughout the growth cycle. Physiol. Plant 1999, 105, 423–433. [Google Scholar] [CrossRef]
- Deng, X.; Woodward, F.I. The growth and yield responses of Fragaria ananassa to elevated CO2 and N Supply. Ann. Bot. 1998, 81, 67–71. [Google Scholar] [CrossRef]
- Bushway, L.J.; Pritts, M.P. Photosynthesis, source-sink physiology-enhancing early spring microclimate to increase carbon resources and productivity in june-bearing strawberry. J. Am. Soc. Hort. Sci. 2002, 127, 415–422. [Google Scholar]
- Campbell, D.E.; Young, R. Short-term CO2 exchange response to temperature, irradiance, and CO2 concentration in strawberry. Photosynth. Res. 1986, 8, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Keutgen, N.; Chen, K.; Lenz, F. Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J. Plant Physiol. 1997, 150, 395–400. [Google Scholar] [CrossRef]
- Bunce, J.A. Seasonal patterns of photosynthetic response and acclimation to elevated carbon dioxide in field-grown strawberry. Photosynth. Res. 2001, 68, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, Y.; Gosselin, A.; Yelle, S. Acclimatization of ex vitro strawberry plantlets in CO2-enriched environments and supplementary lighting. J. Am. Soc. Hort. Sci. 1987, 112, 846–851. [Google Scholar]
- Porter, M.; Grodzinski, B. CO2 enrichment of protected crops. Hort. Rev. 1985, 7, 345–398. [Google Scholar]
- Wheeler, R.; Sager, J.; Prince, R.; Knott, W.; Mackowiak, C.; Stutte, G. Crop production for advanced life support systems- observations from the Kennedy Space Center Breadboard Project; National Aeronautics and Space Administration: Mims, FL, USA, February 2003. [Google Scholar]
- Yu, J.; Tang, X.; Zhang, P.; Tian, J.; Cai, H. Effects of CO2 enrichment on photosynthesis, lipid peroxidation and activities of antioxidative enzymes of platymonas subcordiformis subjected to UV-B radiation stress. Acta Bot. Sin. 2004, 46, 682–690. [Google Scholar]
- Jackson, R.B.; Sala, O.E.; Field, C.B.; Mooney, H.A. Carbon dioxide alters water use, carbon gain, and yield of dominant species in a natural grassland. Oecologia 1994, 98, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Morison, J.I.L. Intercellular CO2 Concentration and Stomatal Response to CO2; Stanford University Press: Palo Alto, CA, USA, 1987. [Google Scholar]
- Jones, P.A.; Jones, L.; Boote, J.; Campbell, K. Soybean canopy growth, photosynthesis, and transpiration responses to whole-season carbon dioxide Enrichment1. Agron. J. 1985, 76, 633. [Google Scholar] [CrossRef]
- Allen, L., Jr.; Vu, J.; Valle, R.; Boote, K.; Jones, P. Nonstructural carbohydrates and nitrogen of soybean grown under carbon dioxide enrichment. Crop Sci. 1988, 28, 84–94. [Google Scholar] [CrossRef]
- Caemmerer, S.; Farquhar, G. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Drake, B.G.; Gonzàlez-Meler, M.A.; Long, S.P. More efficient plants: A consequence of rising atmospheric CO2? Annu. Rev. Plant Biol. 1997, 48, 609–639. [Google Scholar] [CrossRef] [PubMed]
- Bowes, G. Growth at elevated CO2: Photosynthetic responses mediated through Rubisco. Plant Cell Environ. 1991, 14, 795–806. [Google Scholar] [CrossRef]
- Vu, J.; Allen, L., Jr.; Boote, K.; Bowes, G. Effects of elevated CO2 and temperature on photosynthesis and Rubisco in rice and soybean. Plant Cell Environ. 1997, 20, 68–76. [Google Scholar] [CrossRef]
- Zobayed, S.; Murch, S.; Rupasinghe, H.; Saxena, P. In vitro production and chemical characterization of St. john’s wort (Hypericum perforatum L. cv new stem’). Plant Sci. 2004, 166, 333–340. [Google Scholar] [CrossRef]
- Sharkey, T.D. Estimating the rate of photorespiration in leaves. Physiol. Plant 1988, 73, 147–152. [Google Scholar] [CrossRef]
- Khadri, A.; Neffati, M.; Smiti, S.; Falé, P.; Lino, A.R.L.; Serralheiro, M.L.M. Antioxidant, antiacetylcholinesterase and antimicrobial activities of cymbopogonschoenanthus L. spreng (lemon grass) from tunisia. LWT-Food Sci. Technol. 2010, 43, 331–336. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Cuadra, P.; Harborne, J.B.; Waterman, P.G. Increases in surface flavonols and photosynthetic pigments in gnaphaliumluteo-album in response to UV-B radiation. Phytochemistry 1997, 45, 1377–1383. [Google Scholar] [CrossRef]
- Jia, C.; Li, A. Effect of gamma radiation on mutant induction of Fagopyrum dibotrys Hara. Photosynthetica 2008, 46, 363–369. [Google Scholar] [CrossRef]
Sample Availability: Contact the authors. |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Moghaddam, S.S.; Jaafar, H.B.; Aziz, M.A.; Ibrahim, R.; Rahmat, A.B.; Philip, E. Flavonoid and Leaf Gas Exchange Responses of Centella asiatica to Acute Gamma Irradiation and Carbon Dioxide Enrichment under Controlled Environment Conditions. Molecules 2011, 16, 8930-8944. https://doi.org/10.3390/molecules16118930
Moghaddam SS, Jaafar HB, Aziz MA, Ibrahim R, Rahmat AB, Philip E. Flavonoid and Leaf Gas Exchange Responses of Centella asiatica to Acute Gamma Irradiation and Carbon Dioxide Enrichment under Controlled Environment Conditions. Molecules. 2011; 16(11):8930-8944. https://doi.org/10.3390/molecules16118930
Chicago/Turabian StyleMoghaddam, Sina Siavash, Hawa Binti Jaafar, Maheran Abdul Aziz, Rusli Ibrahim, Asmah Bt Rahmat, and Elizabeth Philip. 2011. "Flavonoid and Leaf Gas Exchange Responses of Centella asiatica to Acute Gamma Irradiation and Carbon Dioxide Enrichment under Controlled Environment Conditions" Molecules 16, no. 11: 8930-8944. https://doi.org/10.3390/molecules16118930
APA StyleMoghaddam, S. S., Jaafar, H. B., Aziz, M. A., Ibrahim, R., Rahmat, A. B., & Philip, E. (2011). Flavonoid and Leaf Gas Exchange Responses of Centella asiatica to Acute Gamma Irradiation and Carbon Dioxide Enrichment under Controlled Environment Conditions. Molecules, 16(11), 8930-8944. https://doi.org/10.3390/molecules16118930