Synthesis and Antifungal Activity of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry Benzohydrazide
2.2. The Antifungal Activities of Oxadiazole Methyl Sulfones
Compound | R | Inhibition (%) | |
---|---|---|---|
F. oxysporum | C. mandshurica | ||
5a | 71.1 ± 7.7 | 68.3 ± 9.3 | |
5b | 97.5 ± 3.3 | 89.7 ± 3.1 | |
5c | 72.6 ± 6.4 | 78.2 ± 4.7 | |
5d | 70.1 ± 4.9 | 64.0 ± 1.3 | |
5e | 98.8 ± 8.0 | 97.8 ± 11.8 | |
5f | 94.0 ± 4.1 | 97.6 ± 4.3 | |
5g | 89.6 ± 4.5 | 91.3 ± 9.6 | |
5h | 74.6 ± 8.5 | 99.3 ± 12.8 | |
5i | 77.0 ± 6.6 | 79.6 ± 7.1 | |
5j | 67.1 ± 4.8 | 64.0 ± 2.6 | |
Hymexazol | 58.4 ± 0.8 | 57.3 ± 0.3 |
2.3. Toxicity of Some Title Compounds on 8 Kinds of Pathogenic Fungi
Compounds | Fungi | Toxic regression equation | EC50 (µg/mL) | R |
---|---|---|---|---|
5d | C. mandshurica | y = 1.428x + 2.283 | 79.92 ± 14.79 | 0.861 |
F. oxysporum | y = 1.355x + 3.017 | 29.07 ± 7.82 | 0.952 | |
R. solani | y = 2.163x + 3.251 | 6.43 ± 1.34 | 0.878 | |
B. cinerea | y = 1.341x + 4.038 | 5.21 ± 2.05 | 0.921 | |
P. infestans | y = 1.372x + 3.397 | 14.73 ± 3.23 | 0.846 | |
C. gloeosporioides | y = 2.930x + 1.173 | 20.23 ± 6.65 | 0.961 | |
S. sclerotiorum | y = 1.860x + 3.272 | 8.49 ± 3.51 | 0.919 | |
T. cucumeris | y = 3.537x + 1.460 | 10.01 ± 5.64 | 0.974 | |
5e | C. mandshurica | y = 3.623x − 0.735 | 38.27 ± 3.21 | 0.867 |
F. oxysporum | y = 1.439x + 2.384 | 65.75 ± 7.04 | 0.976 | |
T. cucumeris | y = 7.95x − 5.878 | 23.35 ± 4.76 | 0.980 | |
R. solani | y = 3.681x + 0.115 | 21.23 ± 4.12 | 0.916 | |
B. cinerea | y = 1.993x + 3.173 | 8.25 ± 0.85 | 0.853 | |
P. infestans | y = 1.216x + 2.842 | 59.52 ± 16.79 | 0.991 | |
C. gloeosporioides | y = 4.629x − 1.556 | 26.07 ± 7.32 | 0.943 | |
S. sclerotiorum | y = 5.984x − 2.034 | 14.97 ± 6.83 | 0.974 | |
5f | C. mandshurica | y = 1.131x + 2.747 | 98.18 ± 8.35 | 0.981 |
F. oxysporum | y = 1.081x + 2.912 | 85.41 ± 17.92 | 0.988 | |
T. cucumeris | y = 2.381x + 1.661 | 25.25 ± 2.34 | 0.911 | |
R. solani | y = 2.432x + 2.061 | 16.16 ± 9.76 | 0.916 | |
B. cinerea | y = 2.528x + 2.712 | 8.03 ± 0.86 | 0.962 | |
P. infestans | y = 1.163x + 3.101 | 42.93 ± 7.38 | 0.993 | |
C. gloeosporioides | y = 1.861x + 2.171 | 33.12 ± 8.29 | 0.979 | |
S. sclerotiorum | y = 5.036x − 1.223 | 17.20 ± 4.72 | 0.951 | |
5i | F. oxysporum | y = 4.243x − 1.261 | 29.89 ± 1.31 | 0.918 |
C. mandshurica | y = 4.355x − 2.179 | 44.50 ± 3.56 | 0.947 | |
R. solani | y = 5.036x − 1.879 | 20.02 ± 1.28 | 0.978 | |
T. cucumeris | y = 5.285x − 3.994 | 24.78 ± 4.29 | 0.964 | |
S. sclerotiorum | y = 2.562x + 2.003 | 14.78 ± 1.02 | 0.879 | |
B. cinerea | y = 7.582x − 5.026 | 21.00 ± 2.01 | 0.947 | |
C. gloeosporioides | y = 6.364x − 3.537 | 21.95 ± 2.93 | 0.963 | |
P. infestans | y = 1.358x + 2.697 | 49.64 ± 9.39 | 0.958 | |
Hymexazol | F. oxysporum | y = 1.343x + 3.058 | 27.93 ± 1.02 | 0.980 |
C. mandshurica | y = 2.103x + 1.647 | 39.26 ± 2.79 | 0.999 | |
R. solani | y = 3.532x − 0.604 | 38.64 ± 0.45 | 0.880 | |
T. cucumeris | y = 1.298x + 3.043 | 32.21 ± 5.82 | 0.958 | |
S. sclerotiorum | y = 2.346x + 2.900 | 7.76 ± 2.98 | 0.998 | |
C. gloeosporioides | y = 3.896x − 1.136 | 37.58 ± 3.16 | 0.946 | |
P. infestans | y = 1.715x + 2.559 | 26.49 ± 1.42 | 0.858 | |
B. cinerea | y = 2.014x + 2.177 | 25.23 ± 6.12 | 0.917 |
3. Experimental
3.1. General
3.2. Preparation of the Intermediates 1–3
3.3. Preparation of the Intermediates 4
3.4. Preparation of the Title Compounds 5
3.5. Antifungal Activities Test
4. Conclusions
Acknowledgments
Conflict of Interest
References and Notes
- Russell, P.E. A century of fungicide evolution. J. Agric. Sci. 2005, 143, 11–25. [Google Scholar] [CrossRef]
- Copping, L.G.; Menn, J.J. Biopesticides: A review of their action, applications and efficacy. Pest. Manag. Sci. 2000, 56, 651–767. [Google Scholar] [CrossRef]
- Fitzjohn, S.; Robinson, M.P. Benzoxazole and benzothiazole derivatives. WO 9406783, 1994. Chem. Abst. 1994, 121, 9394. [Google Scholar]
- Hiromichi, I.; Masakazu, T.; Ten, U.; Seiichi, K. Preparation of disulfonylthiadiazoles and their use as agrochemical microbicides. JP 94116252, 1994. Chem. Abst. 1994, 121, 127847. [Google Scholar]
- Plant, A.; Boehmer, J.E.; Black, J.; Sparks, T.D. Isoxazoline derivatives and their preparation, herbicidal composition, and use as herbicides to control weeds or plant growth inhibition. WO 2006024820, 2006. Chem. Abst. 2006, 144, 274262. [Google Scholar]
- Gong, P.; Chai, H.F.; Zhao, Y.F.; Zhao, C.S. Synthesis and in vitro anti-hepatitis B virus activities of some ethyl 5-hydroxy-1H-indole-3-carboxylates. Bioorg. Med. Chem. 2006, 14, 2552–2558. [Google Scholar] [CrossRef]
- Tai, X.S.; Yin, X.H.; Tan, M.Y. Crystal structure and antitumor activity of tri[2-[N-(4'-methyl-benzylsulfonyl)amino]ethyl]-amine. Chin. J. Struct. Chem. 2003, 22, 411–414. [Google Scholar]
- Fang, S.H.; Padmavathi, V.; Rao, Y.K.; Subbaiah, D.R.C.; Thriveni, P.; Geethangili, M.; Padaja, A.; Tzeng, Y.M. Biological evaluation of sulfone derivatives as anti-inflammatory and tumor cells growth inhibitory agents. Int. Immunopharmacol. 2006, 6, 1699–1705. [Google Scholar] [CrossRef]
- Vedula, M.S.; Pulipaka, A.B.; Venna, C.; Chintakunta, V.K.; Jinnapally, S.; Kattuboina, V.A.; Vallakati, R.K.; Basetti, V.; Akella, V.; Rajgopai, S.; et al. New styryl sulfones as anticancer agents. Eur.J.Med.Chem. 2003, 38, 811–824. [Google Scholar] [CrossRef]
- Silvestri, R.; Artico, M.; Regina, G.L. Anti-HIV-1 activity of pyrryl aryl sulfone (PAS) derivatives: Synthesis and SAR studies of novel esters and amides at the position 2 of the pyrrole nucleus. Farmaco 2004, 59, 201–210. [Google Scholar] [CrossRef]
- Talath, S.; Gadad, A.K. Synthesis, antibacterial and anti-tubercular activities of some 7-[4-(5-amino-[1,3,4]thiadiazole-2-sulfonyl)-piperazin-1-yl] fluoroquinolonic derivatives. Eur. J. Med. Chem. 2006, 41, 918–924. [Google Scholar] [CrossRef]
- Diehr, H.J.; Marhold, A.; Brandes, W.; Hanssler, G. Preparation of 2,5-bis (alkylsulfonyl)-1,3,4-thiadiazoles as agrochemical fungicides. DE 3838432, 1990. Chem. Abst. 1990, 113, 191364. [Google Scholar]
- Assmann, L.; Stenzel, K.; Erdelen, C.; Kugler, M.; Wachtler, P. Nitrophenyl sulfonyl imidazoles and use thereof for controlling vegetable and animal pests. US 20020094936 A1, 2002. Chem. Abst. 2002, 130, 125074. [Google Scholar]
- Yuan, D.K.; Li, Z.M.; Zhao, W.G.; Chen, H.S. Synthesis and bioactivity of 2-substituted amino-5-pyrazolyl-1,3,4-oxadiazoles. Chin. J. Appl. Chem. 2003, 20, 624–628. [Google Scholar]
- Ohshima, T.; Komyojia, T.; Mitani, S. Development of a novel fungicide, eyazofamid. J. Pestic. Sci. 2004, 29, 136–138. [Google Scholar] [CrossRef]
- Komyji, N.; Terumasa, K.; Kazumi, S.; Keiichiro, I. Imidazole compounds and biocidal compositions comprising the same. EP 0298196A1, 1989. Chem. Abst. 1989, 110, 192824. [Google Scholar]
- Liu, Z.; Yang, G.; Qin, X. Syntheses and biological activities of novel diheterocyclic compounds containing 1,2,4-triazolo[1,5-α]pyrimidine and 1,3,4-oxadiazole. J. Chem. Technol. Biotechnol. 2001, 76, 1154–1158. [Google Scholar] [CrossRef]
- Jiang, L.; Tan, Y.; Zhu, X.; Wang, Z.; Zuo, Y.; Chen, Q.; Xi, Z.; Yang, G.F. Design, synthesis, and 3D-QSAR analysis of novel 1,3,4-oxadiazol-2(3H)-ones as protoporphyrinogen oxidase inhibitors. J. Agric. Food Chem. 2010, 58, 2643–2651. [Google Scholar] [CrossRef]
- Qian, X.; Zhang, R. Syntheses and insecticidal activities of novel 2,5-disubstituted-1,3,4-oxadiazoles. J. Chem. Tech. Biotechnol. 1996, 67, 124–130. [Google Scholar] [CrossRef]
- Cao, S.; Qian, X.; Song, G.; Chai, B.; Jiang, Z. Synthesis and antifeedant activity of new oxadiazolyl 3(2H)-pyridazinones. J. Agric. Food Chem. 2003, 51, 152–155. [Google Scholar] [CrossRef]
- Keshari, K.J.; Abdul, S.; Yatendra, K.; Mohd, S.; Ratan, L.K.; Jainendra, J.; Vikash, K.; Priyanka, S. Design, synthesis and biological evaluation of 1,3,4-oxadiazole derivatives. Eur. J. Med. Chem. 2010, 45, 4963–4967. [Google Scholar] [CrossRef]
- Chen, C.J.; Song, B.A.; Yang, S.; Xu, G.F.; Bhadury, P.S.; Jin, L.H.; Hu, D.Y.; Li, Q.Z.; Liu, F.; Xue, W.; et al. Synthesis and antifungal activities of 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-thiadiazole and 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. 2007, 15, 3981–3989. [Google Scholar] [CrossRef]
- Liu, F.; Luo, X.Q.; Song, B.A.; Bhadury, P.S.; Yang, S.; Jin, L.H.; Xue, W.; Hu, D.Y. Synthesis and antifungal activity of novel sulfoxide derivatives containing trimethoxyphenyl substituted 1,3,4-thiadiazole and 1,3,4-oxadiazole moiety. Bioorg. Med. Chem. 2008, 16, 3632–3640. [Google Scholar] [CrossRef]
- Pees, B.; Paul, J.M.; Oget, N.; Sindt, M.; Mieloszynski, J.L. Synthesis of fluoro-substituted monomers bearing a functionalised lateral chain: Part 2. Preparation of sulfoxides and sulfones containing monomers. J. Fluorine Chem. 2003, 124, 139–146. [Google Scholar] [CrossRef]
- Yamazaki, S. Selective synthesis of sulfones and sulfoxides by methytrioxorhenium catalyzed oxidation of sulfides with hydrogen peroxide. Bull. Chem. Soc. Jpn. 1996, 69, 2955–2959. [Google Scholar] [CrossRef]
- Confalone, P.N.; Woodward, R.B. A novel synthesis of peptides based on the photochemistry of 5-azido-1,3,4-oxadiazoles. J. Am. Chem. Soc. 1983, 105, 902–906. [Google Scholar] [CrossRef]
- Song, B.A.; Chen, C.J.; Yang, S.; Jin, L.H.; Xue, W.; Zhang, S.M.; Zou, Z.H.; Hu, D.Y. Synthesis, structure and antitumor activity of 2-alkylthio-5-(3,4,5-trimethoxyphenyl)-1,3,4-thiadiazole compounds. Acta Chim. Sinica 2005, 63, 1720–1726. [Google Scholar]
- Chen, C.J.; Song, B.A.; Yang, S.; Xu, G.F.; Bhadury, P.S.; Jin, L.H.; Hu, D.Y.; Li, Q.Z.; Liu, F.; Xue, W.; et al. Synthesis and antifungal activities of 5-(3,4,5-trimethoxyphenyl)- 2-sulfonyl-1,3,4-thiadiazole and 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives. Bioorg. Med. Chem. 2007, 15, 3981–3989. [Google Scholar]
- Tarun, K.C.; Prem, D.J. Antifungal activity of 4-methyl-6-alkyl-2H-pyran-2-ones. J. Agric. Food Chem. 2006, 54, 2129–2133. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds are available from the authors.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Xu, W.; He, J.; He, M.; Han, F.; Chen, X.; Pan, Z.; Wang, J.; Tong, M. Synthesis and Antifungal Activity of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties. Molecules 2011, 16, 9129-9141. https://doi.org/10.3390/molecules16119129
Xu W, He J, He M, Han F, Chen X, Pan Z, Wang J, Tong M. Synthesis and Antifungal Activity of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties. Molecules. 2011; 16(11):9129-9141. https://doi.org/10.3390/molecules16119129
Chicago/Turabian StyleXu, Weiming, Jiang He, Ming He, Feifei Han, Xuehai Chen, Zhaoxi Pan, Jian Wang, and Maoguo Tong. 2011. "Synthesis and Antifungal Activity of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties" Molecules 16, no. 11: 9129-9141. https://doi.org/10.3390/molecules16119129
APA StyleXu, W., He, J., He, M., Han, F., Chen, X., Pan, Z., Wang, J., & Tong, M. (2011). Synthesis and Antifungal Activity of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties. Molecules, 16(11), 9129-9141. https://doi.org/10.3390/molecules16119129