Effects of Rutin and Hesperidin and Their Al(III) and Cu(II) Complexes on in Vitro Plasma Coagulation Assays
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of flavonoids on the coagulation assays
2.2. Effects of flavonoid-metal complexes on the coagulation assay
3. Experimental
3.1. Reagents
3.2. Complex preparation
3.3. Measurement of clotting assays
4. Conclusions
Acknowledgments
References
- Hertog, M.G.L.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet 1993, 342, 1007–1011. [Google Scholar] [CrossRef]
- Knekt, P.; Kumpulainen, J.; Jarvinen, R.; Rissanen, H.; Heliovaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.; Lamb, A. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, P.J.; Kurowska, E.M.; Freeman, D.J. In vivo inhibition of growth of human tumor lines by flavonoid fractions from cranberry extract. Nutr. Cancer 2006, 56, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, S.V.; Steenken, S.; Simic, M.G.; Hara, Y. Antioxidant properties of flavonoids: Reduction potentials and electron transfer reactions of flavonoid radicals. In Flavonoids in Health and Disease; Rice-Evans, C.A., Packer, L., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1998; pp. 137–161. [Google Scholar]
- Teixeira, S.; Siquet, C.; Aloes, C.; Boal, I.; Marques, M.P.; Borges, F.; Lima, J.L.F.C.; Reis, S. Structure-property studies on the antioxidant activity of flavonoids present in diet. Free Radic. Biol. Med. 2005, 39, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Pietta, P.G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Van Acker, S.A.B.E.; van Den Berg, D.-J.; Tromp, M.N.J.L.; Griffioen, D.H.; van Bennekom, W.P.; van der Vijgh, W.J.F.; Bast, A. Structural aspects of antioxidant activity of flavonoids. Free Radic. Biol. Med. 1996, 20, 331–342. [Google Scholar] [CrossRef]
- van Acker, S.A.B.; van Balen, G.P.; van den Berg, D.J.; Bast, A.; van der Vijgh, W.F.F. Influence of iron chelation on the antioxidant activity of flavonoids. Biochem. Pharmacol. 1998, 56, 935–943. [Google Scholar] [CrossRef]
- Afanas’ev, I.B.; Dorozhko, A.I.; Brodskii, A.V.; Kostyuk, V.A.; Potapovitch, A.I. Chelating and Free Radical Scavenging Mechanisms of Inhibitory Action of Rutin and Quercetin in Lipid Peroxidation. Biochem. Pharmacol. 1989, 38, 1763–1769. [Google Scholar] [CrossRef]
- Bukhari, B.; Memon, S.; Mahroof-Tahir, M.; Bhanger, M.I. Synthesis, characterization and antioxidant activity copper–quercetin complex. Spectrochim. Acta A 2009, 71, 1901–1906. [Google Scholar] [CrossRef] [PubMed]
- Kuntić, V.; Malešev, D.; Radović, Z.; Vukojević, V. Spectrophotometric investigation of complexing reaction between rutin and titanyloxalate anion in 50% ethanol. Monaths.Chem. 2000, 131, 769–778. [Google Scholar] [CrossRef]
- Kuntić, V.; Blagojević, S.; Malešev, D.; Radović, Z. Spectrophotometric investigation of Cu(II)-hesperidin complex in 50% ethanol. Pharmazie 1999, 54, 548–549. [Google Scholar]
- Kuntić, V.; Blagojević, S.; Malešev, D.; Radović, Z.; Bogavac, M. Spectrophotometric Investigation of the Pd(II)-Quercetin Complex in 50% Ethanolic Solution. Monatsh. Chem. 1998, 129, 41–48. [Google Scholar] [CrossRef]
- Kuntić, S.V.; Malešev, L.D.; Radović, V.Z.; Kosanić, M.M.; Mioč, B.U.; Vukojević, B.V. Spectrophotometric Investigation of Uranil(II)-Rutin Complex in 70% ethanol. J. Agric. Food Chem. 1998, 46, 5139–5142. [Google Scholar] [CrossRef]
- Kuntić, V.; Kosanić, M.; Malešev, D.; Radović, Z. Spectrophotometric investigation of Pd(II)-rutin complexes and its application to rutin determination in tablets. Pharmazie 1998, 53, 724–726. [Google Scholar]
- Malešev, D.; Radović, Z.; Kuntić, V.; Kosanić, M. Spectrophotometric determination of hesperidin by Al(III)-hesperidin complex in water-methanol solution. Anal. Letters 1997, 30, 917–926. [Google Scholar]
- Pereira, R.M.S.; Andrades, N.E.D.; Paulino, N.; Sawaya, A.C.H.F.; Eberlin, M.N.; Marcucci, M.C.; Favero, G.M.; Novak, E.M.; Bydlowski, S.P. Synthesis and Characterization of a Metal Complex Containing Naringin and Cu, and its Antioxidant, Antimicrobial, Antiinflammatory and Tumor Cell Cytotoxicity. Molecules 2007, 12, 1352–1366. [Google Scholar]
- Kostyuk, V.A.; Potapovich, A.I.; Vladykovskaya, E.N.; Korkina, L.G.; Afanas’ev, I.B. Influence of metal ions on flavonoid protection against asbestos-induced cell injury. Arch. Biochem. Biophys. 2001, 385, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Moridani, M.Y.; Pourahmad, J.; Bui, H.; Siraki, A.; O’Brien, P.J. Flavonoids iron complexes as cytoprotective superoxide scavengers: superoxide dismutase mimics. Free Radic. Biol.Med. 2003, 34, 243–253. [Google Scholar] [CrossRef]
- De Souza, R.F.; De Giovani, W.F. Antioxidant properties of complexes of flavonoids with metal ions. Redox. Rep. 2004, 9, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Afanas’ev, I.B.; Ostrachovich, E.A.; Mikhal’chik, E.V.; Ibragimova, G.A.; Korkina, L.G. Enhancement of antioxidant and antiinflammatory activities of bioflavonoid rutin by complexation with transition metals. Biochem. Pharmacol. 2001, 61, 677–684. [Google Scholar] [CrossRef]
- Tang, H.; Wang, X.; Yang, S.; Wang, L. Synthesis, characterization, and biological activities of Pt(II) and Pd(II) complexes with 2′,3′,4′,5,7-pentahydroxy flavone. Rare Metals 2004, 23, 38–42. [Google Scholar]
- Kopacz, M.; Woznicka, E.; Gruszecka, J. Antibacterial activity of morin and its complexes La(III), Gd(III) and Lu(III) ions. Acta Pol. Pharm. 2005, 62, 65–67. [Google Scholar] [PubMed]
- Etcheverry, S.B.; Ferrer, E.G.; Naso, L.; Rivadeneira, J.; Salinas, V.; Williams, P.A. Antioxidant effects of the VO(IV) hesperidin complex and its role in cancer chemoprevention. J. Biol. Inorg. Chem. 2008, 13, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Jun, T.; Bochu, W.; Liancai, Z. Hydrolytic cleavage of DNA by quercetin zinc(II) complex. Bioorg. Med. Chem. Lett. 2007, 17, 1197–1199. [Google Scholar] [CrossRef] [PubMed]
- McGregor, L.; Bellangeon, M.; Chignier, E.; Lerond, L.; Rouselle, C.; McGregor, J.L. Effect of a micronized purified flavonoid fraction on in vivo platelet functions in the rat. Thromb. Res. 1999, 15, 235–240. [Google Scholar] [CrossRef]
- Freedman, J.E.; Parker, C.; Li, L.; Perlman, J.A.; Frei, B.; Ivanov, V.; Deak, L.R.; Iafrati, M.D.; Folts, J.D. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation 2001, 103, 2792–2798. [Google Scholar] [CrossRef] [PubMed]
- Lale, A.; Herbert, J.M. Ability of different flavonoids to inhibit the procoagulant activity of adherent human monocytes. J. Nat. Prod. 1996, 59, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Guglielmone, H.A.; Agnese, A.M.; Nunez Montoyab, S.C.; Cabrerab, J.L. Anticoagulant effect and action mechanism of sulphated flavonoids from Flaveria bidentis. Thromb. Res. 2002, 105, 183–188. [Google Scholar] [CrossRef]
- http://www.herbs2000.com/h_menu/rutin.htm (accessed on 20 November 2010).
- http://www.phytochemicals.info/phytochemicals/hesperidin.php (accessed on 20 November 2011).
- Senguputa, B.; Sengupta, P.K. The interaction of quercetin with human serum albumin: a fluorescence spectroscopic study. Biochem. Biophys. Res. Commun. 2002, 299, 400–403. [Google Scholar] [CrossRef]
- Zsila, F.; Bikadi, Z.; Simonyi, M. Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modelling methods. Biochem. Pharmacol. 2003, 65, 447–456. [Google Scholar] [CrossRef]
- Gutzeit, H.O.; Henker, Y.; Kind, B.; Franz, A. Specific interaction of quercetin and other flavonoids with target proteins are revealed by elicited fluorescence. Biophys. Res. Commun. 2004, 318, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Inczedy, J. Analytical Applications of Complex Equilibria; Horwood, E., Ed.; Wiley: New York, NY, USA, 1976; p. 141. [Google Scholar]
Sample Availability: Samples of the compounds flavonoid-metal complexes are available from the authors. |
aPTT, s | TT, s | PT, s | |
---|---|---|---|
Standard plasma | 31.9±0.2 | 16.0 ± 0.3 | 9.5 ± 0.1 |
Control (plasma + water) | 32.6 ± 0.9 | 17.5 ± 0.4 | 9.8 ± 0.3 |
Rutin, µM | |||
20 | 33.2 ± 0.7 | 18.2 ± 0.2 | 10.2 ± 0.4 |
9 | 30.7 ± 0.4 | 17.8 ± 0.9 | 10.9 ± 0.3 |
5 | 29.9 ± 1.1 | 16.9 ± 1.3 | 11.0 ± 0.5 |
2 | 30.5 ± 0.4 | 17.1 ± 0.5 | 10.8 ± 0.5 |
1 | 32.1 ± 0.3 | 18.0 ± 0.4 | 11.0 ± 0.6 |
0.6 | 32.8 ± 0.8 | 17.9 ± 0.6 | 11.8 ± 0.2 |
Hesperidin, µM | |||
2 | 31.7 ± 0.9 | 17.4 ± 0.5 | 10.0 ± 0.4 |
1 | 30.5 ± 0.6 | 16.8 ± 0.7 | 10.9 ± 0.3 |
0.5 | 32.0 ± 0.5 | 17.7 ± 0.9 | 10.5 ± 0.2 |
0.25 | 30.3 ± 0.5 | 16.9 ± 0.4 | 11.0 ± 0.5 |
0.12 | 32.1 ± 0.6 | 17.7 ± 0.8 | 11.7 ± 0.5 |
0.06 | 31.1 ± 0.8 | 20.0 ± 0.3 | 11.0 ± 0.6 |
aPTT, s | TT, s | PT, s | |
---|---|---|---|
Standard plasma | 29.9 ± 0.2 | 11.8 ± 0.1 | 10.9 ± 0.2 |
Control (plasma+ ethanol) | 49.9 ± 0.8 | 19.8 ± 0.9 | 16.7 ± 0.8 |
Rutin, µM | |||
830 | 55.9 ± 0.6 | 19.2 ± 0.8 | 16.1 ± 0.3 |
400 | 50.7 ± 0.6 | 19.1 ± 0.8 | 15.8 ± 0.9 |
200 | 49.1 ± 0.9 | 18.9 ± 0.5 | 15.9 ± 0.9 |
100 | 48.5 ± 0.3 | 18.1 ± 1.1 | 16.0 ± 0.8 |
50 | 49.2 ± 0.9 | 19.2 ± 0.9 | 16.2 ± 0.7 |
Hesperidin, µM | |||
470 | 51.8 ± 0.9 | 18.8 ± 0.8 | 16.6 ± 0.3 |
200 | 49.6 ± 0.9 | 19.8 ± 0.3 | 15.0 ± 1.1 |
100 | 49.4 ± 0.6 | 18.7 ± 0.4 | 16.2 ± 0.7 |
50 | 49.3 ± 0.7 | 18.9 ± 0.9 | 16.1 ± 0.5 |
25 | 47.1 ± 0.2 | 19.7 ± 0.8 | 15.0 ± 0.6 |
Coagulation factors | II | V | VII | VIII | IX | X | XI | XII |
---|---|---|---|---|---|---|---|---|
Standard plasma | 99.9 | 110.0 | 116.0 | 91.4 | 116.0 | 100.0 | 80.9 | 90.9 |
Control (plasma+ ethanol) | 77.3 | 71.1 | 90.0 | 38.3 | 53.7 | 82.3 | 48.3 | 56.3 |
Rutin | 79.5 | 66.4 | 87.8 | 29.2 | 45.0 | 84.0 | 44.8 | 54.9 |
Hesperidin | 77.3 | 70.1 | 92.7 | 38.7 | 51.5 | 84.3 | 47.2 | 55.9 |
Rut-Al | 73.3 | 59.1 | 88.9 | 24.1 | 30.7 | 83.0 | 40.1 | 49.3 |
Rut-Cu | 75.8 | 70.1 | 92.4 | 38.1 | 50.6 | 82.1 | 49.3 | 50.5 |
Hesp-Al | 71.3 | 70.0 | 88.2 | 29.9 | 35.9 | 82.3 | 41.5 | 50.6 |
Hesp-Cu | 72.3 | 66.8 | 90.1 | 27.1 | 32.6 | 84.0 | 40.9 | 51.2 |
aPTT, s | TT, s | PT, s | |
---|---|---|---|
Standard plasma | 29.1 ± 0.2 | 18.0 ± 0.1 | 10.0 ± 0.2 |
Control (plasma+ ethanol) | 38.1 ± 0.4 | 26.8 ± 0.7 | 18.9 ± 0.4 |
Rutin | 38.9 ± 0.2 | 26.8 ± 0.8 | 17.9 ± 0.4 |
Hesperidin | 37.7 ± 0.5 | 27.0 ± 0.9 | 18.3 ± 0.5 |
Al(NO3)3 | 36.9 ± 0.4 | 26.9 ± 0.6 | 18.4 ± 0.9 |
Cu(NO3)2 | 37.0 ± 0.2 | 27.1 ± 0.2 | 18.0 ± 0.5 |
Rut-Al | 66.6 ± 0.9 | 25.9 ± 0.4 | 18.2 ± 0.5 |
Rut-Cu | 40.9 ± 0.4 | 27.2 ± 0.5 | 19.0 ± 0.4 |
Hesp-Al | 54.9 ± 0.5 | 28.0 ± 0.9 | 19.1 ± 0.7 |
Hesp-Cu | 63.7 ± 0.9 | 27.7 ± 0.8 | 18.5 ± 0.9 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kuntić, V.; Filipović, I.; Vujić, Z. Effects of Rutin and Hesperidin and Their Al(III) and Cu(II) Complexes on in Vitro Plasma Coagulation Assays. Molecules 2011, 16, 1378-1388. https://doi.org/10.3390/molecules16021378
Kuntić V, Filipović I, Vujić Z. Effects of Rutin and Hesperidin and Their Al(III) and Cu(II) Complexes on in Vitro Plasma Coagulation Assays. Molecules. 2011; 16(2):1378-1388. https://doi.org/10.3390/molecules16021378
Chicago/Turabian StyleKuntić, Vesna, Ivana Filipović, and Zorica Vujić. 2011. "Effects of Rutin and Hesperidin and Their Al(III) and Cu(II) Complexes on in Vitro Plasma Coagulation Assays" Molecules 16, no. 2: 1378-1388. https://doi.org/10.3390/molecules16021378
APA StyleKuntić, V., Filipović, I., & Vujić, Z. (2011). Effects of Rutin and Hesperidin and Their Al(III) and Cu(II) Complexes on in Vitro Plasma Coagulation Assays. Molecules, 16(2), 1378-1388. https://doi.org/10.3390/molecules16021378