Design and Screening of M13 Phage Display cDNA Libraries
Abstract
:1. Introduction
2. Cloning Strategies for Functional cDNA Presentation
2.1. Direct N-terminal fusion to pIII
2.2. Indirect fusion to pIII
2.3. C-terminal fusion to pVI
3. Different Pathways for Periplasmic Expression
4. ORFeome Collections
5. Implementation of Next Generation Sequencing
6. Conclusions and Outlook
Acknowledgements
References and Notes
- Smith, G.P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228, 1315–1317. [Google Scholar]
- Stengele, I.; Bross, P.; Garces, X.; Giray, J.; Rasched, I. Dissection of functional domains in phage fd adsorption protein. Discrimination between attachment and penetration sites. J. Mol. Biol. 1990, 212, 143–149. [Google Scholar] [CrossRef]
- Deng, L.W.; Malik, P.; Perham, R.N. Interaction of the globular domains of pIII protein of filamentous bacteriophage fd with the F-pilus of Escherichia coli. Virology 1999, 253, 271–277. [Google Scholar] [CrossRef]
- Crissman, J.W.; Smith, G.P. Gene-III protein of filamentous phages: Evidence for a carboxyl-terminal domain with a role in morphogenesis. Virology 1984, 132, 445–455. [Google Scholar] [CrossRef]
- Armstrong, J.; Perham, R.N.; Walker, J.E. Domain structure of bacteriophage fd adsorption protein. FEBS Lett. 1981, 135, 167–172. [Google Scholar] [CrossRef]
- Sidhu, S.S.; Lowman, H.B.; Cunningham, B.C.; Wells, J.A. Phage display for selection of novel binding peptides. Methods Enzymol. 2000, 328, 333–363. [Google Scholar]
- Cwirla, S.E.; Peters, E.A.; Barrett, R.W.; Dower, W.J. Peptides on phage: A vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. USA 1990, 87, 6378–6382. [Google Scholar] [CrossRef]
- Swimmer, C.; Lehar, S.M.; McCafferty, J.; Chiswell, D.J.; Blattler, W.A.; Guild, B.C. Phage display of ricin B chain and its single binding domains: System for screening galactose-binding mutants. Proc. Natl. Acad. Sci. USA 1992, 89, 3756–3760. [Google Scholar]
- McCafferty, J.; Griffiths, A.D.; Winter, G.; Chiswell, D.J. Phage antibodies: Filamentous phage displaying antibody variable domains. Nature 1990, 348, 552–554. [Google Scholar] [CrossRef]
- Hoogenboom, H.R.; Griffiths, A.D.; Johnson, K.S.; Chiswell, D.J.; Hudson, P.; Winter, G. Multi-subunit proteins on the surface of filamentous phage: Methodologies for displaying antibody (Fab) heavy and light chains. Nucl. Acids Res. 1991, 19, 4133–4137. [Google Scholar]
- Carcamo, J.; Ravera, M.W.; Brissette, R.; Dedova, O.; Beasley, J.R.; Alam-Moghe, A.; Wan, C.; Blume, A.; Mandecki, W. Unexpected frameshifts from gene to expressed protein in a phage-displayed peptide library. Proc. Natl. Acad. Sci. USA 1998, 95, 11146–11151. [Google Scholar]
- Cochrane, D.; Webster, C.; Masih, G.; McCafferty, J. Identification of natural ligands for SH2 domains from a phage display cDNA library. J. Mol. Biol. 2000, 297, 89–97. [Google Scholar] [CrossRef]
- Faix, P.H.; Burg, M.A.; Gonzales, M.; Ravey, E.P.; Baird, A.; Larocca, D. Phage display of cDNA libraries: Enrichment of cDNA expression using open reading frame selection. Biotechniques 2004, 36, 1018–1029. [Google Scholar]
- Yen, M.; Yin, J. High-throughput profiling of posttranslational modification enzymes by phage display. Biotechniques 2007, 43, 31–35. [Google Scholar]
- Deng, S.J.; Liu, W.; Simmons, C.A.; Moore, J.T.; Tian, G. Identifying substrates for endothelium-specific Tie-2 receptor tyrosine kinase from phage-displayed peptide libraries for high throughput screening. Comb. Chem. High Throughput Scr. 2001, 4, 525–533. [Google Scholar] [CrossRef]
- Durr, C.; Nothaft, H.; Lizak, C.; Glockshuber, R.; Aebi, M. The Escherichia coli glycophage display system. Glycobiology 2010, 20, 1366–1372. [Google Scholar] [CrossRef]
- Bratkovic, T. Progress in phage display: Evolution of the technique and its application. Cell. Mol. Life Sci. 2010, 67, 749–767. [Google Scholar] [CrossRef]
- Jestin, J.L. Functional cloning by phage display. Biochimie 2008, 90, 1273–1278. [Google Scholar] [CrossRef]
- Konthur, Z.; Crameri, R. High-throughput applications of phage display in proteomic analyses. TARGETS 2003, 2, 261–270. [Google Scholar] [CrossRef]
- Felici, F.; Castagnoli, L.; Musacchio, A.; Jappelli, R.; Cesareni, G. Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J. Mol. Biol. 1991, 222, 301–310. [Google Scholar] [CrossRef]
- Jespers, L.S.; Messens, J.H.; De Keyser, A.; Eeckhout, D.; Van den Brande, I.; Gansemans, Y.G.; Lauwereys, M.J.; Vlasuk, G.P.; Stanssens, P.E. Surface expression and ligand-based selection of cDNAs fused to filamentous phage gene VI. Biotechnology (N Y) 1995, 13, 378–382. [Google Scholar] [CrossRef]
- Mead, D.A.; Kemper, B. Chimeric single-stranded DNA phage-plasmid cloning vectors. Biotechnology 1988, 10, 85–102. [Google Scholar]
- Barbas, C.F., 3rd; Kang, A.S.; Lerner, R.A.; Benkovic, S.J. Assembly of combinatorial antibody libraries on phage surfaces: The gene III site. Proc. Natl. Acad. Sci. USA 1991, 88, 7978–7982. [Google Scholar]
- Breitling, F.; Dübel, S.; Seehaus, T.; Klewinghaus, I.; Little, M. A surface expression vector for antibody screening. Gene 1991, 104, 147–153. [Google Scholar] [CrossRef]
- Vieira, J.; Messing, J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987, 153, 3–11. [Google Scholar] [CrossRef]
- Rondot, S.; Koch, J.; Breitling, F.; Dübel, S. A helper phage to improve single-chain antibody presentation in phage display. Nat. Biotechnol. 2001, 19, 75–78. [Google Scholar] [CrossRef]
- Paschke, M. Phage display systems and their applications. Appl. Microbiol. Biotechnol. 2006, 70, 2–11. [Google Scholar] [CrossRef]
- Soltes, G.; Hust, M.; Ng, K.K.; Bansal, A.; Field, J.; Stewart, D.I.; Dübel, S.; Cha, S.; Wiersma, E.J. On the influence of vector design on antibody phage display. J. Biotechnol. 2007, 127, 626–637. [Google Scholar]
- Zacchi, P.; Sblattero, D.; Florian, F.; Marzari, R.; Bradbury, A.R. Selecting open reading frames from DNA. Genome Res. 2003, 13, 980–990. [Google Scholar] [CrossRef]
- Di Niro, R.; Sulic, A.M.; Mignone, F.; D'Angelo, S.; Bordoni, R.; Iacono, M.; Marzari, R.; Gaiotto, T.; Lavric, M.; Bradbury, A.R.; Biancone, L.; Zevin-Sonkin, D.; De Bellis, G.; Santoro, C.; Sblattero, D. Rapid interactome profiling by massive sequencing. Nucl. Acids Res. 2010, 38, e110. [Google Scholar]
- Hust, M.; Meysing, M.; Schirrmann, T.; Selke, M.; Meens, J.; Gerlach, G.F.; Dübel, S. Enrichment of open reading frames presented on bacteriophage M13 using hyperphage. Biotechniques 2006, 41, 335–342. [Google Scholar]
- Crameri, R.; Suter, M. Display of biologically active proteins on the surface of filamentous phages: A cDNA cloning system for selection of functional gene products linked to the genetic information responsible for their production. Gene 1993, 137, 69–75. [Google Scholar] [CrossRef]
- Rhyner, C.; Kodzius, R.; Crameri, R. Direct selection of cDNAs from filamentous phage surface display libraries: Potential and limitations. Curr. Pharm. Biotechnol. 2002, 3, 13–21. [Google Scholar] [CrossRef]
- Crameri, R.; Jaussi, R.; Menz, G.; Blaser, K. Display of expression products of cDNA libraries on phage surfaces. A versatile screening system for selective isolation of genes by specific gene-product/ligand interaction. Eur. J. Biochem. 1994, 226, 53–58. [Google Scholar] [CrossRef]
- Crameri, R. Molecular cloning of Aspergillus fumigatus allergens and their role in allergic bronchopulmonary aspergillosis. Chem. Immunol. 2002, 81, 73–93. [Google Scholar] [CrossRef]
- Kodzius, R.; Rhyner, C.; Konthur, Z.; Buczek, D.; Lehrach, H.; Walter, G.; Crameri, R. Rapid identification of allergen-encoding cDNA clones by phage display and high-density arrays. Comb. Chem. High Throughput Scr. 2003, 6, 147–154. [Google Scholar]
- Kleber-Janke, T.; Crameri, R.; Scheurer, S.; Vieths, S.; Becker, W.M. Patient-tailored cloning of allergens by phage display: Peanut (Arachis hypogaea) profilin, a food allergen derived from a rare mRNA. J. Chromatogr. B Biomed. Sci. Appl. 2001, 756, 295–305. [Google Scholar] [CrossRef]
- Eriksson, T.L.; Rasool, O.; Huecas, S.; Whitley, P.; Crameri, R.; Appenzeller, U.; Gafvelin, G.; van Hage-Hamsten, M. Cloning of three new allergens from the dust mite Lepidoglyphus destructor using phage surface display technology. Eur. J. Biochem. 2001, 268, 287–294. [Google Scholar]
- Bittner, C.; Grassau, B.; Frenzel, K.; Baur, X. Identification of wheat gliadins as an allergen family related to baker's asthma. J. Allergy Clin. Immunol. 2008, 121, 744–749. [Google Scholar]
- Rhyner, C.; Weichel, M.; Flückiger, S.; Hemmann, S.; Kleber-Janke, T.; Crameri, R. Cloning allergens via phage display. Methods 2004, 32, 212–218. [Google Scholar] [CrossRef]
- Crameri, R.; Rhyner, C.; Weichel, M.; Konthur, Z.; Flückiger, S. Identification of natural protein-protein interactions with cDNA libraries. In Phage Display in Biotechnology and Drug Discovery, 1st; Sidhu, S.S., Ed.; CRC Press,Taylor & Francis Group: Boca Raton, FL, USA, 2005; pp. 415–440. [Google Scholar]
- Kemp, E.H.; Herd, L.M.; Waterman, E.A.; Wilson, A.G.; Weetman, A.P.; Watson, P.F. Immunoscreening of phage-displayed cDNA-encoded polypeptides identifies B cell targets in autoimmune disease. Biochem. Biophys. Res. Commun. 2002, 298, 169–177. [Google Scholar] [CrossRef]
- Waterman, E.A.; Gawkrodger, D.J.; Watson, P.F.; Weetman, A.P.; Kemp, E.H. Autoantigens in vitiligo identified by the serological selection of a phage-displayed melanocyte cDNA expression library. J. Invest. Dermatol. 2010, 130, 230–240. [Google Scholar] [CrossRef]
- Fossa, A.; Alsoe, L.; Crameri, R.; Funderud, S.; Gaudernack, G.; Smeland, E.B. Serological cloning of cancer/testis antigens expressed in prostate cancer using cDNA phage surface display. Cancer Immunol. Immunother. 2004, 53, 431–438. [Google Scholar] [CrossRef]
- Brunet, E.; Chauvin, C.; Choumet, V.; Jestin, J.L. A novel strategy for the functional cloning of enzymes using filamentous phage display: The case of nucleotidyl transferases. Nucl. Acids Res. 2002, 30, e40. [Google Scholar] [CrossRef]
- Weichel, M.; Jaussi, R.; Rhyner, C.; Crameri, R. Display of E. coli Alkaline Phosphatase pIII or pVIII Fusions on Phagemid Surfaces Reveals Monovalent Decoration with Active Molecules. Open Biochem. J. 2008, 2, 38–43. [Google Scholar] [CrossRef]
- Boulanger, R.R., Jr.; Kantrowitz, E.R. Characterization of a monomeric Escherichia coli alkaline phosphatase formed upon a single amino acid substitution. J. Biol. Chem. 2003, 278, 23497–23501. [Google Scholar]
- Endemann, H.; Model, P. Location of filamentous phage minor coat proteins in phage and in infected cells. J. Mol. Biol. 1995, 250, 496–506. [Google Scholar] [CrossRef]
- Makowski, L. Terminating a macromolecular helix. Structural model for the minor proteins of bacteriophage M13. J. Mol. Biol. 1992, 228, 885–892. [Google Scholar] [CrossRef]
- Jespers, L.S.; De Keyser, A.; Stanssens, P.E. LambdaZLG6: A phage lambda vector for high-efficiency cloning and surface expression of cDNA libraries on filamentous phage. Gene 1996, 173, 179–181. [Google Scholar] [CrossRef]
- Hufton, S.E.; Moerkerk, P.T.; Meulemans, E.V.; de Bruine, A.; Arends, J.W.; Hoogenboom, H.R. Phage display of cDNA repertoires: The pVI display system and its applications for the selection of immunogenic ligands. J. Immunol. Methods. 1999, 231, 39–51. [Google Scholar] [CrossRef]
- Somers, V.A.; Brandwijk, R.J.; Joosten, B.; Moerkerk, P.T.; Arends, J.W.; Menheere, P.; Pieterse, W.O.; Claessen, A.; Scheper, R.J.; Hoogenboom, H.R.; Hufton, S.E. A panel of candidate tumor antigens in colorectal cancer revealed by the serological selection of a phage displayed cDNA expression library. J. Immunol. 2002, 169, 2772–2780. [Google Scholar]
- Viaene, A.; Crab, A.; Meiring, M.; Pritchard, D.; Deckmyn, H. Identification of a collagen-binding protein from Necator americanus by using a cDNA-expression phage display library. J. Parasitol. 2001, 87, 619–625. [Google Scholar]
- Krebber, A.; Bornhauser, S.; Burmester, J.; Honegger, A.; Willuda, J.; Bosshard, H.R.; Plückthun, A. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J. Immunol. Methods 1997, 201, 35–55. [Google Scholar] [CrossRef]
- Bothmann, H.; Plückthun, A. Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotechnol. 1998, 16, 376–380. [Google Scholar]
- Bothmann, H.; Plückthun, A. The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. J. Biol. Chem. 2000, 275, 17100–17105. [Google Scholar] [CrossRef]
- Kramer, R.A.; Cox, F.; van der Horst, M.; van der Oudenrijn, S.; Res, P.C.; Bia, J.; Logtenberg, T.; de Kruif, J. A novel helper phage that improves phage display selection efficiency by preventing the amplification of phages without recombinant protein. Nucl. Acids Res. 2003, 31, e59. [Google Scholar]
- Jestin, J.L.; Volioti, G.; Winter, G. Improving the display of proteins on filamentous phage. Res. Microbiol. 2001, 152, 187–191. [Google Scholar] [CrossRef]
- Yuan, J.; Zweers, J.C.; van Dijl, J.M.; Dalbey, R.E. Protein transport across and into cell membranes in bacteria and archaea. Cell. Mol. Life Sci. 2010, 67, 179–199. [Google Scholar] [CrossRef]
- Natale, P.; Bruser, T.; Driessen, A.J. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. Biochim. Biophys. Acta 2008, 1778, 1735–1756. [Google Scholar] [CrossRef]
- Hust, M.; Dübel, S. Phage display vectors for the in vitro generation of human antibody fragments. Methods Mol. Biol. 2005, 295, 71–96. [Google Scholar]
- Rapoza, M.P.; Webster, R.E. The filamentous bacteriophage assembly proteins require the bacterial SecA protein for correct localization to the membrane. J. Bacteriol. 1993, 175, 1856–1859. [Google Scholar]
- Steiner, D.; Forrer, P.; Stumpp, M.T.; Plückthun, A. Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nat. Biotechnol. 2006, 24, 823–831. [Google Scholar] [CrossRef]
- Thie, H.; Schirrmann, T.; Paschke, M.; Dübel, S.; Hust, M. SRP and Sec pathway leader peptides for antibody phage display and antibody fragment production in E. coli. N. Biotechnol. 2008, 25, 49–54. [Google Scholar]
- Paschke, M.; Hohne, W. A twin-arginine translocation (Tat)-mediated phage display system. Gene 2005, 350, 79–88. [Google Scholar] [CrossRef]
- Bechtel, S.; Rosenfelder, H.; Duda, A.; Schmidt, C.P.; Ernst, U.; Wellenreuther, R.; Mehrle, A.; Schuster, C.; Bahr, A.; Blocker, H.; Heubner, D.; Hoerlein, A.; Michel, G.; Wedler, H.; Kohrer, K.; Ottenwalder, B.; Poustka, A.; Wiemann, S.; Schupp, I. The full-ORF clone resource of the German cDNA Consortium. BMC Genomics 2007, 8, 399. [Google Scholar] [CrossRef]
- Lamesch, P.; Li, N.; Milstein, S.; Fan, C.; Hao, T.; Szabo, G.; Hu, Z.; Venkatesan, K.; Bethel, G.; Martin, P.; Rogers, J.; Lawlor, S.; McLaren, S.; Dricot, A.; Borick, H.; Cusick, M.E.; Vandenhaute, J.; Dunham, I.; Hill, D.E.; Vidal, M. hORFeome v3.1: A resource of human open reading frames representing over 10,000 human genes. Genomics 2007, 89, 307–315. [Google Scholar]
- Weiste, C.; Iven, T.; Fischer, U.; Onate-Sanchez, L.; Droge-Laser, W. In planta ORFeome analysis by large-scale over-expression of GATEWAY-compatible cDNA clones: Screening of ERF transcription factors involved in abiotic stress defense. Plant J. 2007, 52, 382–390. [Google Scholar] [CrossRef]
- Rajagopala, S.V.; Yamamoto, N.; Zweifel, A.E.; Nakamichi, T.; Huang, H.K.; Mendez-Rios, J.D.; Franca-Koh, J.; Boorgula, M.P.; Fujita, K.; Suzuki, K.; Hu, J.C.; Wanner, B.L.; Mori, H.; Uetz, P. The Escherichia coli K-12 ORFeome: A resource for comparative molecular microbiology. BMC Genomics 2010, 11, 470. [Google Scholar]
- Pellet, J.; Tafforeau, L.; Lucas-Hourani, M.; Navratil, V.; Meyniel, L.; Achaz, G.; Guironnet-Paquet, A.; Aublin-Gex, A.; Caignard, G.; Cassonnet, P.; Chaboud, A.; Chantier, T.; Deloire, A.; Demeret, C.; Le Breton, M.; Neveu, G.; Jacotot, L.; Vaglio, P.; Delmotte, S.; Gautier, C.; Combet, C.; Deleage, G.; Favre, M.; Tangy, F.; Jacob, Y.; Andre, P.; Lotteau, V.; Rabourdin-Combe, C.; Vidalain, P.O. ViralORFeome: An integrated database to generate a versatile collection of viral ORFs. Nucl. Acids Res. 2010, 38, D371–D378. [Google Scholar]
- Walhout, A.J.; Temple, G.F.; Brasch, M.A.; Hartley, J.L.; Lorson, M.A.; van den Heuvel, S.; Vidal, M. GATEWAY recombinational cloning: Application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol. 2000, 328, 575–592. [Google Scholar] [CrossRef]
- Metzker, M.L. Sequencing technologies - the next generation. Nat. Rev. Genet. 2010, 11, 31–46. [Google Scholar] [CrossRef]
- Glanville, J.; Zhai, W.; Berka, J.; Telman, D.; Huerta, G.; Mehta, G.R.; Ni, I.; Mei, L.; Sundar, P.D.; Day, G.M.; Cox, D.; Rajpal, A.; Pons, J. Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc. Natl. Acad. Sci. USA 2009, 106, 20216–20221. [Google Scholar]
- Dias-Neto, E.; Nunes, D.N.; Giordano, R.J.; Sun, J.; Botz, G.H.; Yang, K.; Setubal, J.C.; Pasqualini, R.; Arap, W. Next-generation phage display: Integrating and comparing available molecular tools to enable cost-effective high-throughput analysis. PLoS One 2009, 4, e8338. [Google Scholar]
- Ravn, U.; Gueneau, F.; Baerlocher, L.; Osteras, M.; Desmurs, M.; Malinge, P.; Magistrelli, G.; Farinelli, L.; Kosco-Vilbois, M.H.; Fischer, N. By-passing in vitro screening--next generation sequencing technologies applied to antibody display and in silico candidate selection. Nucl. Acids Res. 2010, 38, e193. [Google Scholar] [CrossRef]
- Mersich, C.; Jungbauer, A. Generation of bioactive peptides by biological libraries. J. Chromatogr. B Anal. Technol. Biomed. Life. Sci. 2008, 861, 160–170. [Google Scholar] [CrossRef]
- Somers, K.; Geusens, P.; Elewaut, D.; De Keyser, F.; Rummens, J.L.; Coenen, M.; Blom, M.; Stinissen, P.; Somers, V. Novel autoantibody markers for early and seronegative rheumatoid arthritis. J. Autoimmun. 2011, 36, 33–46. [Google Scholar] [CrossRef]
- Ran, Y.; Hu, H.; Zhou, Z.; Yu, L.; Sun, L.; Pan, J.; Liu, J.; Yang, Z. Profiling tumor-associated autoantibodies for the detection of colon cancer. Clin. Cancer Res. 2008, 14, 2696–2700. [Google Scholar] [CrossRef]
- Alsoe, L.; Stacy, J.E.; Fossa, A.; Funderud, S.; Brekke, O.H.; Gaudernack, G. Identification of prostate cancer antigens by automated high-throughput filter immunoscreening. J. Immunol. Methods 2008, 330, 12–23. [Google Scholar] [CrossRef]
- Pereboeva, L.A.; Pereboev, A.V.; Wang, L.F.; Morris, G.E. Hepatitis C epitopes from phage-displayed cDNA libraries and improved diagnosis with a chimeric antigen. J. Med. Virol. 2000, 60, 144–151. [Google Scholar]
- Van Dorst, B.; Mehta, J.; Rouah-Martin, E.; Somers, V.; De Coen, W.; Blust, R.; Robbens, J. cDNA phage display as a novel tool to screen for cellular targets of chemical compounds. Toxicol. In Vitro 2010, 24, 1435–1440. [Google Scholar] [CrossRef]
- Glökler, J.; Schütze, T.; Konthur, Z. Automation in the high-throughput selection of random combinatorial libraries--different approaches for select applications. Molecules 2010, 15, 2478–2490. [Google Scholar]
- Rhyner, C.; Konthur, Z.; Blaser, K.; Crameri, R. High-throughput isolation of recombinant antibodies against recombinant allergens. Biotechniques 2003, 35, 672–674. [Google Scholar]
- Konthur, Z.; Wilde, J.; Lim, T.S. Semi-automated Magnetic Bead-Based Antibody Selection from Phage Display Libraries. In Antibody Engineering, 2nd; Kontermann, R., Dübel, S., Eds.; Springer: Berlin Heidelberg, Germany, 2010; Volume 1, pp. 267–287. [Google Scholar]
- Konthur, Z.; Walter, G. Automation of phage display for high-throughput antibody development. TARGETS 2002, 1, 30–36. [Google Scholar] [CrossRef]
- Konthur, Z. Automation of selection and engineering. In Handbook of Therapeutic Antibodies; Dübel, S., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp. 412–430. [Google Scholar]
- Sample Availability: Not available.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Georgieva, Y.; Konthur, Z. Design and Screening of M13 Phage Display cDNA Libraries. Molecules 2011, 16, 1667-1681. https://doi.org/10.3390/molecules16021667
Georgieva Y, Konthur Z. Design and Screening of M13 Phage Display cDNA Libraries. Molecules. 2011; 16(2):1667-1681. https://doi.org/10.3390/molecules16021667
Chicago/Turabian StyleGeorgieva, Yuliya, and Zoltán Konthur. 2011. "Design and Screening of M13 Phage Display cDNA Libraries" Molecules 16, no. 2: 1667-1681. https://doi.org/10.3390/molecules16021667
APA StyleGeorgieva, Y., & Konthur, Z. (2011). Design and Screening of M13 Phage Display cDNA Libraries. Molecules, 16(2), 1667-1681. https://doi.org/10.3390/molecules16021667