Synthesis and Anticancer Activity of Some Novel Tetralin-6-yl-pyrazoline, 2-Thioxopyrimidine, 2-Oxopyridine, 2-Thioxo-pyridine and 2-Iminopyridine Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Anticancer Screening
3. Experimental
3.1. General
3.2. 3-Aryl-1-(1,2,3,4-tetrahydronaphthalen-6-yl)prop-2-en-1-ones 3a-c
3.3. 1-Acetyl-4-(2,6-difluorophenyl)-3-(1,2,3,4-tetrahydronaphthalen-6-yl)-2-pyrazoline 4
3.4. 4-Aryl-6-(1,2,3,4-tetrahydronaphthalen-6-yl)-1,2-dihydropyrimidine-2-thiones 5a,b
3.5. 4-Aryl-6-(1,2,3,4-tetrahydronaphthalen-6-yl)-2-oxo-1,2-dihydropyridine-3-carbonitriles 6a,b
3.6. 4-Aryl-6-(1,2,3,4-tetrahydronaphthalen-6-yl)-2-thioxo-1,2-dihydropyridine-3-carbonitriles 7a-c
3.7. 4-Aryl-6-(1,2,3,4-tetrahydronaphthalen-6-yl)-2-imino-1,2-dihydropyridine-3-carbonitriles 8a,b
3.8. Determination of the anticancer activity [26]
4. Conclusions
Acknowledgements
References
- Balunas, M.J.; Kinghorn, A.D. Drug Discovery from medicinal plants. Life Sci. 2005, 78, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Parkin, D.M. Global cancer statistics in the year 2000. Lancet Oncol. 2001, 2, 533–543. [Google Scholar] [CrossRef]
- Carmen, A.J.; Carlos, M. Medicinal Chemistry of Anticancer Drugs, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 1–8. [Google Scholar]
- Ferrante, A.; Augliera, J.; Lewis, K. Cloning of an organic solvent-resistance gene in Escherichia coli: The unexpected role of alkylhydroperoxide reductase. Proc. Natl. Acad. Sci. USA 1995, 92, 7617–7621. [Google Scholar] [CrossRef] [PubMed]
- Hara, H.; Fujihashi, T.; Sakata, T. Tetrahydronaphthalene lignan compounds as potent anti-HIV type 1 agents. AIDS Res. Hum. Retroviruses 1997, 13, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Ebeid, M.Y.; El-Zahar, M.I.; Kamel, M.M.; Omar, M.T.; Anwar, M.M. Novel 5,6,7,8-tetrahydronaphth-2-ylheterocycles of possible biological activity. Egypt. Pharm. J. NRC 2004, 3, 49–65. [Google Scholar]
- Nabih, I.; Zayed, A.; Kamel, M.M.; Motawie, M.S. Synthesis of new tetrahydronaphthyl-1,2,4-triazines of potensial antimicrobial activity. Egypt. J. Chem. 1986, 29, 101–106. [Google Scholar]
- Hussain, R.A.; Dickey, J.K.; Rosser, M.P.; Matson, J.A.; Kozlowski, M.R.; Brittain, R.J.; Webb, M.L.; Rose, P.M.; Fernandes, P.A. Novel class of non-peptidic endothelin antagonists isolated from the medicinal herb phyllanthus niruri. J. Nat. Prod. 1995, 58, 1515–1520. [Google Scholar] [CrossRef]
- Chalina, E.G.; Chakarova, L. Synthesis, hypotensive and antiarrhythmic activities of 3-alkyl-1-(2-hydroxy-5,8-dimethoxy-1,2,3,4-tetrahydro-3-naphthalenyl)ureas or thioureas and their guanidine analogues. Eur. J. Med. Chem. 1998, 33, 975–983. [Google Scholar] [CrossRef]
- Kamel, M.M.; Michael, J.M. Synthesis and moulscicidal activity of some salicylamido tetralins. Egypt. J. Bilharziasis 1988, 10, 121–125. [Google Scholar]
- Cimetière, B.; Dubuffet, T.; Muller, O.; Descombes, J.; Simonet, S.; Laubie, M.; Verbeuren, T.J.; Lavielle, G. Synthesis and biological evaluation of new tetrahydronaphthalene derivatives as thromboxane receptor antagonists. Bioorg. Med. Chem. Lett. 1998, 8, 1375–1340. [Google Scholar] [CrossRef]
- Takami, M.; Tsukada, W. Effect of DP-1904, a thromboxane synthetase inhibitor, on antigen- and spasmogen-induced bronchoconstriction in rodents. Eur. J. Pharmacol. 1999, 366, 253–259. [Google Scholar] [CrossRef]
- Rogóz, Z.; Skuza, G.; Kodziñska, A. Anxiolytic-and antidepressant-like effects of 7-OH DPAT, preferential dopamine D3 receptor agonist in rats. Pol. J. Pharmacol. 2004, 56, 519–529. [Google Scholar]
- Kitamura, Y.; Araki, H.; Shibata, K.; Gomita, Y.; Tanizaki, Y. 5-HT1A receptor full agonist, 8-OH-DPAT, exerts antidepressant-like effects in the forced swim test in ACTH-treated rats. Eur. J. Pharmacol. 2003, 481, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Amin, K.M.; El-Zahar, M.I.; Anwar, M.; Kamel, M.; Mohamad, M. Synthesis and anticancer activity of novel tetralin-6-yl pyridine and tetralin-6-yl pyrimidine derivatives. Acta Pol. Pharm. 2009, 66, 279–291. [Google Scholar] [PubMed]
- Dong, Y.Z.; Shi, Q.; Nakagawa-Goto, K.; Wu, P.C.; Bastow, K.F.; Morris-Natschke, S.L.; Lee, K.H. Antitumor agents 269. Non-aromatic ring-A neotanshinlactone analog, TNO, as a new class of potent antitumor agents. Bioorg. Med. Chem. Lett. 2009, 19, 6289–6292. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, G.; Erol, D.D.; Uzbay, T.; Aytemir, M.D. Synthesis of 4(1H)-pyridinone derivatives and investigation of analgesic and antiinflammatory activities. Farmaco 2001, 56, 251–256. [Google Scholar] [CrossRef]
- Findlay, J.A.; Tam, W.H.J.; Krepinsky, J. The chemistry of some 6-methyl-4-hydroxy-2-pyridones. Can. J. Chem. 1978, 56, 613–616. [Google Scholar] [CrossRef]
- Abadi, A.; Al-Deeb, O.; Al-Afify, A.; El-Kashef, H. Synthesis of 4-alkyl (aryl)-6-aryl-3-cyano-2(1H)-pyridinones and their 2-imino isosteres as nonsteroidal cardiotonic agents. Farmaco 1999, 54, 195–201. [Google Scholar] [CrossRef]
- Storck, P.; Aubertin, A.; Grierson, D.S. Tosylation/mesylation of 4-hydroxy-3-nitro-2-pyridinones as an activation step in the construction of dihydropyrido[3,4-b] benzo[f][1,4]thiazepin-1-one based anti-HIV agents. Tetrahedron Lett. 2005, 46, 2919–2922. [Google Scholar] [CrossRef]
- Macdonald, G.E.; Puri, A.; Shilling, D.G. Interactive effect of photoperiod and fluridone on growth, reproduction, and biochemistry of dioecious hydrilla (Hydrilla Verticillata). Weed Sci. 2008, 56, 189–195. [Google Scholar] [CrossRef]
- Evidente, A.; Fiore, M.; Bruno, G.; Sparapano, L.; Motta, A. Chemical and biological characterisation of sapinopyridione, a phytotoxic 3,3,6-trisubstituted-2,4-pyridione produced by Sphaeropsis sapinea, a toxigenic pathogen of native and exotic conifers, and its derivatives. Phytochemistry 2006, 67, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Cocco, M.T.; Congiu, C.; Onnis, V. Synthesis and antitumour activity of 4-hydroxy-2-pyridone derivatives. Eur. J. Med. Chem. 2000, 35, 545–552. [Google Scholar] [CrossRef]
- Cocco, M.T.; Congiu, C.; Onnis, V. New bis(pyridyl)methane derivatives from 4-hydroxy-2-pyridones: synthesis and antitumoral activity. Eur. J. Med. Chem. 2003, 38, 37–47. [Google Scholar] [CrossRef]
- Allinger, N.L.; Jones, E.S. Synthesis of some functionally substituted benzocyclanones. J. Org. Chem. 1962, 27, 70–76. [Google Scholar] [CrossRef]
- Storeng, P.; Ritsa, S.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. Anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar]
- Ghoshal, K.; Jacob, S.T. An alternative molecular mechanism of action of 5-fluorouracil, a potent anticancer drug. Biochem. Pharmacol. 1997, 53, 1569–1575. [Google Scholar] [CrossRef]
Sample Availability: Contact the author. |
Comp. No. | X | Mp (ºC) | Cryst. Solv. | Yield (%) | Molecular Formula (Mol. Wt.) |
---|---|---|---|---|---|
3a | 2,6-Cl2 | 71-3 | EtOH | 53 | C19H16Cl2O (331.24) |
3b | 2,6-F2 | 250-2 | EtOH | 42 | C19H16F2O (298.34) |
3c | 3-EtO,4-OH | 77-9 | EtOH | 80 | C20H20O2 (292.38) |
4 | - | > 300 | AcOH | 95 | C21H20F2N2O (354.40) |
5a | 2,6-Cl2 | > 300 | EtOH/H2O | 20 | C20H16Cl2 N2S (387.33) |
5b | 2,6-F2 | 253-5 | EtOH/H2O | 28 | C20H16F2 N2S (354.42) |
6a | 2,6-Cl2 | 252-4 | AcOH | 18 | C22H16Cl2 N2O (395.29) |
6b | 2,6-F2 | 250-2 | AcOH | 30 | C22H16F2 N2O (362.38) |
7a | 2,6-Cl2 | 150-2 | AcOH | 25 | C22H16Cl2 N2S (411.36) |
7b | 2,6-F2 | 124-6 | AcOH | 53 | C22H16F2 N2S (378.45) |
7c | 3-EtO-4-OH | 226-8 | AcOH | 90 | C23H20 N2OS (372.49) |
8a | 2,6-Cl2 | 193-5 | AcOH | 26 | C22H17Cl2 N3 (394.31) |
8b | 2,6-F2 | 100-2 | AcOH | 34 | C22H17F2 N3 (361.40) |
Compound No. | IC50(μg/mL) | |
---|---|---|
Hela | MCF7 | |
3a | 3.5 | 4.5 |
3b | 10.5 | 15 |
3c | 12.5 | 18.3 |
4 | 11.3 | 19 |
5a | 10.7 | 20.5 |
5b | 11.9 | 17.3 |
6a | 7.1 | 12 |
6b | 10.9 | 17.5 |
7a | 8.1 | 16 |
7b | 5.9 | 12.5 |
7c | 6.5 | 16 |
8a | 12.1 | 22.3 |
8b | 12.1 | 21.7 |
5-FU | - | 3.5 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Al-Abdullah, E.S. Synthesis and Anticancer Activity of Some Novel Tetralin-6-yl-pyrazoline, 2-Thioxopyrimidine, 2-Oxopyridine, 2-Thioxo-pyridine and 2-Iminopyridine Derivatives. Molecules 2011, 16, 3410-3419. https://doi.org/10.3390/molecules16043410
Al-Abdullah ES. Synthesis and Anticancer Activity of Some Novel Tetralin-6-yl-pyrazoline, 2-Thioxopyrimidine, 2-Oxopyridine, 2-Thioxo-pyridine and 2-Iminopyridine Derivatives. Molecules. 2011; 16(4):3410-3419. https://doi.org/10.3390/molecules16043410
Chicago/Turabian StyleAl-Abdullah, Ebtehal S. 2011. "Synthesis and Anticancer Activity of Some Novel Tetralin-6-yl-pyrazoline, 2-Thioxopyrimidine, 2-Oxopyridine, 2-Thioxo-pyridine and 2-Iminopyridine Derivatives" Molecules 16, no. 4: 3410-3419. https://doi.org/10.3390/molecules16043410
APA StyleAl-Abdullah, E. S. (2011). Synthesis and Anticancer Activity of Some Novel Tetralin-6-yl-pyrazoline, 2-Thioxopyrimidine, 2-Oxopyridine, 2-Thioxo-pyridine and 2-Iminopyridine Derivatives. Molecules, 16(4), 3410-3419. https://doi.org/10.3390/molecules16043410