1,3-Substituted Imidazolidine-2,4,5-triones: Synthesis and Inhibition of Cholinergic Enzymes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Crystallography
2.3. Lipophilicity
Comp. | R | n | AChE | BChE | log Kow | log P/Clog P | σ [39] |
---|---|---|---|---|---|---|---|
IC50 [μmol/L] | |||||||
3a | H | 0 | 21.4 ± 0.19 | 14.5 ± 0.21 | 1.51 ± 0.03 | 3.91 / 2.769 | 0.00 |
3b | 3-CF3 | 0 | 23.4 ± 0.28 | 17.4 ± 0.37 | 1.12 ± 0.15 | 4.83 / 3.652 | 0.43 |
3c | 4-OCH3 | 0 | 22.4 ± 0.21 | 13.2 ± 0.22 | 0.69 ± 0.02 | 3.78 / 2.688 | −0.27 |
3d | 4-CH(CH3)2 | 0 | 16.6 ± 0.29 | 1.66 ± 0.14 | 1.64 ± 0.03 | 5.14 / 4.196 | −0.15 |
3e | 4-Cl | 0 | 13.8 ± 0.13 | 25.7 ± 0.29 | 0.41 ± 0.02 | 4.46 / 3.482 | 0.23 |
3f | 4-CN | 0 | 19.1 ± 0.27 | 10.5 ± 0.18 | 0.41 ± 0.02 | 3.94 / 2.202 | 1.00 |
3g | 2,6-CH(CH3)2 | 0 | 15.1 ± 0.29 | 30.2 ± 0.45 | 0.98 ± 0.08 | 6.38 / 5.623 | 0.06 |
3h | 3-Cl-4-CH3 | 0 | 15.5 ± 0.2 | 17.0 ± 0.1 | 0.50 ± 0.02 | 4.95 / 3.981 | 0.20 |
3i | 3,5-CH3 | 0 | 21.4 ± 0.19 | 6.76 ± 0.17 | 0.58 ± 0.03 | 4.88 / 3.767 | −0.14 |
3j | 3,5-Cl | 0 | 17.0 ± 0.38 | 29.5 ± 0.39 | 0.77 ± 0.03 | 5.02 / 4.195 | 0.74 |
3k | H | 1 | 18.6 ± 0.16 | 12.6 ± 0.11 | 1.06 ± 0.09 | 3.98 / 3.102 | 0.00 |
RIV | – | – | 501 ± 3.08 | 19.95 ± 0.31 | – | 2.36 / 2.099 | – |
GLT | – | – | 4.0 ± 0.13 | 7.96 ± 0.13 | – | 1.41 / 1.025 | – |
2.4. Inhibition of Cholinergic Enzymes
3. Experimental
3.1. General
3.2. Synthesis
General Procedure for the Synthesis of Compounds 3a–k
3.3. Determination of Crystallography
3.4. Determination of Partition Coefficient Kow
3.5. Lipophilicity Calculations
3.6. In Vitro Evaluation of AChE- and BChE-Inhibiting Activity
4. Conclusions
Supplementary Materials
Supplementary File 1Acknowledgements
References
- Abbs Fen Rejia, T.F.; Rajasekharan, K.N. Synthesis of 2-[2,4-diaminothiazol-5-oyl]benzothiazoles. J. Het. Chem. 2010, 47, 994–997. [Google Scholar] [CrossRef]
- Huang, W.; Yang, G. Microwave-assisted, one-pot syntheses and fungicidal activity of polyfluorinated 2-benzylthiobenzothiazoles. Bioorg. Med. Chem. 2006, 14, 8280–8285. [Google Scholar] [CrossRef]
- Havrylyuk, D.; Mosula, L.; Zimenkovsky, B.; Vasylenko, O.; Gzella, A.; Lesyk, R. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur. J. Med. Chem. 2010, 45, 5012–5021. [Google Scholar] [CrossRef]
- Bradshaw, T.D.; Westwell, A.D. The development of the antitumour benzothiazole prodrug, phortress, as a clinical candidate. Curr. Med. Chem. 2004, 11, 1241–1253. [Google Scholar]
- Song, H.; Oh, S.R.; Lee, H.K.; Han, G.; Kim, J.H.; Chang, H.W.; Don, K.E.; Rhee, H.K.; Choo, H.Y.P. Synthesis and evaluation of benzoxazole derivatives as 5-lipoxygenase inhibitors. Bioorg. Med. Chem. 2010, 18, 7580–7585. [Google Scholar]
- Paramashivappa, R.; Kumar, P.P.; Rao, P.V.S.; Rao, A.S. Design, synthesis and biological evaluation of benzimidazole/benzothiazole and benzoxazole derivatives as cyclooxygenase inhibitors. Bioorg. Med. Chem. Lett. 2003, 13, 657–660. [Google Scholar] [CrossRef]
- Kotani, T.; Ishii, A.; Nagaki, Y.; Toyomaki, Y.; Yago, H.; Suehiro, S.; Okukado, N.; Okamoto, K. Highly selective aldose reductase inhibitors. 2. Optimization of the aryl part of 3-(arylmethyl)-2,4,5-trioxoimidazolidine-1-acetic acids. Chem. Pharm. Bull. 1997, 45, 297–304. [Google Scholar] [CrossRef]
- Robin, M.; Mialhe, S.; Pique, V.; Faure, R.; Galy, J.P. Synthesis of two novel classes of tetracycles bearing tetrahydro ring system from benzothiazole 7,8,9,10-tetrahydrothiazolo[5,4-a]acridine and 1,2,3,4-tetrahydro-12H-benzothiazolo[2,3-b]quinazolin-12-one. J. Het. Chem. 2002, 39, 295–298. [Google Scholar] [CrossRef]
- Pejchal, V.; Stepankova, S.; Drabina, P. Synthesis of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-substituted phenyl ureas and their inhibition activity to acetylcholinesterase and butyrylcholinesterase. J. Heterocycl. Chem. 2011, 48, 57–62. [Google Scholar] [CrossRef]
- Costanzo, M.J.; Almond, H.R.; Hecker, L.R.; Schott, M.R.; Yabut, S.C.; Zhang, H.C.; Andrade-Gordon, P.; Corcoran, T.W.; Giardino, E.C.; Kauffman, J.A. In-depth study of tripeptide-based α-ketoheterocycles as inhibitors of thrombin. Effective utilization of the S1' subsite and its implications to structure-based drug design. J. Med. Chem. 48, 2005, 1984–2008. [Google Scholar]
- Cygler, M.; Schrag, J.D.; Sussman, J.L.; Harel, M.; Silman, I.; Gentry, M.K.; Doctor, B.P. Relationship between sequence conservation and 3-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 1993, 2, 366–382. [Google Scholar]
- Groner, E.; Ashani, Y.; Schorer-Apelbaum, D.; Sterling, J.; Herzig, Y.; Weinstock, M. The kinetics of inhibition of human acetylcholinesterase and butyrylcholinesterase by two series of novel carbamates. Mol. Pharmacol. 2007, 71, 1610–1617. [Google Scholar] [CrossRef]
- Greenblatt, H.M.; Dvir, H.; Silman, I.; Sussman, J.L. Acetylcholinesterase—A multifaceted target for structure-based drug design of anticholinesterase agents for the treatment of Alzheimer’s dinase. J. Mol. Neurosci. 2003, 20, 369–383. [Google Scholar] [CrossRef]
- Soukup, J.E. Alzheimer’s Disease: A Guide to Diagnosis, Treatment, and Management; Greenwood Publishing Group: Westport, CT, USA, 1996. [Google Scholar]
- Lu, L.C.; Bludau, J. Alzheimer's Disease; Greenwood Publishing Group: Santa Barbara, CA, USA, 2011. [Google Scholar]
- Francis, P.T.; Palmer, A.M.; Snape, M.; Wilcock, G.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatr. 1999, 66, 137–147. [Google Scholar] [CrossRef]
- Patel, N.B.; Rathod, R.D. Studies on synthesis and microbial activity of novel benzothiazoles containing 2-hydroxy benzoic acid. Int. J. Chem. Sci. 2006, 4, 569–575. [Google Scholar]
- Menges, M.; Hamprecht, G.; Menke, O.; Reinhard, R.; Schafer, P.; Zagar, C.; Westphalen, K.O.; Otten, M.; Walter, H.; Basf, A.G. Substituted 2-(benzoaryl)pyridines. WO/1999/006394 A1 (PCT/EP1998/003833), 11 February 1999. [Google Scholar]
- Reuveni, M. Activity of the new fungicide benthiavalicarb against Plasmopara viticola and its efficacy in controlling downy mildew in grapevines. Eur. J. Plant. Pathol. 2003, 109, 243–251. [Google Scholar] [CrossRef]
- Ishii, A.; Kotani, T.; Nagaki, Y.; Shibayama, Y.; Toyomaki, Y.; Okukado, N.; Ienaga, K.; Okamoto, K. Highly selective aldose reductase inhibitors. 1. 3-(Arylalkyl)-2,4,5-trioxoimidazolidine-1-acetic acids. J. Med. Chem. 1996, 39, 1924–1927. [Google Scholar] [CrossRef]
- Hijikata, C. (Ihara Chemical Industry Co., Ltd.). Process for producing benzothiazolylalkylamine derivatives. WO/2001/074794 A1 (PCT/JP2001/002848), 11 October 2001. [Google Scholar]
- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. Tables of bond lenghts determined by X-ray and neutron-difraction. 1. Bond lenghts in organic-compounds. J. Chem. Soc. Perkin Trans. 2 1987, 2, 1–19. [Google Scholar]
- Yoshihara, R.; Hosomi, H.; Aoyama, H.; Ohba, S. N-Propylimidazolidinetrione and N-methyl-N'-phenylethylimidazolidinetrione. Acta Crystallogr. C 1999, 55, 594–596. [Google Scholar] [CrossRef]
- Rodriguez, M.A.; Andrews, N.L.; Boyle, T.J.; Frazer, C.S. N-Methylimidazolidinetrione. Acta Crystallogr. E 2005, 61, o2288–o2290. [Google Scholar]
- Davies, D.R. The crystal structure of parabanic acid. Acta Crystallogr. 1955, 8, 129–136. [Google Scholar] [CrossRef]
- Craven, B.M.; McMullan, R.K. Charge density in parabanic acid from X-ray and neutron diffraction. Acta Crystallogr. B 1979, 35, 934–945. [Google Scholar] [CrossRef]
- He, X.M.; Swaminathan, S.; Craven, B.M.; McMullan, R.K. Thermal vibrations and electrostatic properties of parabanic acid at 123 and 298 K. Acta Crystallogr. B 1988, 44, 271–281. [Google Scholar] [CrossRef]
- Blackman, A.G.; Buckingham, D.A.; Simpson, J. Reactions of coordinated imidazole. Oxidation products and ring cleavage in the reactions of RImH3+ (R = pentaamminecobalt) with acetyl hypobromite and hypobromous acid. Inorg. Chem. 1991, 30, 1635–1642. [Google Scholar] [CrossRef]
- Weber, H.P.; Craven, B.M. Structure and charge density of the 1:1 complex of thiourea with parabanic acid at 298 K. Acta Crystallogr. B. 1987, 43, 202–209. [Google Scholar] [CrossRef]
- Colman, P.M.; Medlin, E.H. The crystal structure of thiourea parabanic acid. Acta Crystallogr. B 1970, 26, 1553–1559. [Google Scholar] [CrossRef]
- Weber, H.P.; Ruble, J.R.; Craven, B.M.; McMullan, R.K. The neutron structure at 116 K of the 1:1 complex of perdeuterated parabanic acid and urea. Acta Crystallogr. B 1980, 36, 1121–1126. [Google Scholar] [CrossRef]
- Colman, P.M.; Medlin, E.H. The crystal structure of urea parabanic acid. Acta Crystallogr. B 1970, 26, 1547–1553. [Google Scholar] [CrossRef]
- Sarker, S.R.; Stone, D.M.; Evain, E.J.; Cooley, J.H.; Willett, R.D. Reaction of oxalyl and malonyl chloride with 1,1-dimethyl-2-substituted hydrazides. J. Heterocycl. Chem. 1994, 31, 1535–1539. [Google Scholar] [CrossRef]
- Volkova, Y.A.; Averina, E.B.; Rybakov, V.B.; Kuznetsova, T.S. Private Communication. Available online: http://www.ccdc.cam.ac.uk/products/csd/deposit/communications.php/ (accessed on 20 August 2011).
- Zarzyka-Niemiec, I.; Lubczak, J.; Ciunik, Z.; Wolowiec, S.; Ruman, T. Bis(hydroxyalkylated) derivates of parabanic acid. Heterocycl. Commun. 2002, 8, 559–564. [Google Scholar]
- Forrester, A.R.; Howie, R.A.; Stephen, K. Structure of N,N'-diacetylparabanic acid. Acta Crystallogr. C 1988, 860–862. [Google Scholar]
- Kerns, E.H.; Li, D. Drug-like Properties: Concept, Structure Design and Methods; Elsevier: San Diego, CA, USA, 2008. [Google Scholar]
- Darvesh, S.; McDonald, R.S.; Darvesh, K.V.; Mataija, D.; Conrad, S.; Gomez, G.; Walsh, R.; Martin, E. Selective reversible inhibition of human butyrylcholinesterase by aryl amide derivatives of phenotiazine. Bioorg. Med. Chem. 2007, 15, 6367–6378. [Google Scholar] [CrossRef]
- Norrington, F.E.; Hyde, R.M.; Williams, S.G.; Wotton, R. Physicochemical-activity relations in practice. 1. Rational and self-consistent data bank. J. Med. Chem. 1975, 18, 604–607. [Google Scholar] [CrossRef]
- Chiou, S.Y.; Huang, C.F.; Hwang, M.T.; Lin, G. Comparison of active sites of butyrylcholinesterase and acetylcholinesterase based on inhibition by geometric isomers of benzene-di-N-substituted carbamates. J. Biochem. Mol. Tox. 2009, 5, 303–308. [Google Scholar]
- Berger, S.; Braun, S.; Kalinowski, H.O. NMR Spectroscopy of the Non-Metallic Elements; John Wiley: Chichester, UK, 1997. [Google Scholar]
- Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzym. 1997, 276, 307–326. [Google Scholar]
- Ahmed, F.R.; Hall, S.R.; Huber, C.P. Crystallographic Computing; Munksgaard: Copenhagen, Denmark, 1970. [Google Scholar]
- Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. Completion and refinement of crystal structures with SIR92. J. Appl. Crystallogr. 1993, 26, 343–350. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- OECD guideline for the testing of chemicals 107—Partition coefficient (n-octanol/water): Shake Flask Method. Available online: http://www.oecd.org/ (accessed on 17 August 2011).
- Kwok, S.O.; Wang, K.C.; Kwok, H.B. An improved method to determine SH and –S–S– group content in soymilk protein. Food Chem. 2004, 88, 317–320. [Google Scholar] [CrossRef]
- Sinko, G.; Calic, M.; Bosak, A.; Kovarik, Z. Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007, 370, 223–227. [Google Scholar]
- Zdrazilova, P.; Stepankova, S.; Komers, K.; Ventura, K.; Cegan, A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Naturforsch. 2004, 59, 293–296. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pejchal, V.; Stepankova, S.; Padelkova, Z.; Imramovsky, A.; Jampilek, J. 1,3-Substituted Imidazolidine-2,4,5-triones: Synthesis and Inhibition of Cholinergic Enzymes. Molecules 2011, 16, 7565-7582. https://doi.org/10.3390/molecules16097565
Pejchal V, Stepankova S, Padelkova Z, Imramovsky A, Jampilek J. 1,3-Substituted Imidazolidine-2,4,5-triones: Synthesis and Inhibition of Cholinergic Enzymes. Molecules. 2011; 16(9):7565-7582. https://doi.org/10.3390/molecules16097565
Chicago/Turabian StylePejchal, Vladimir, Sarka Stepankova, Zdenka Padelkova, Ales Imramovsky, and Josef Jampilek. 2011. "1,3-Substituted Imidazolidine-2,4,5-triones: Synthesis and Inhibition of Cholinergic Enzymes" Molecules 16, no. 9: 7565-7582. https://doi.org/10.3390/molecules16097565
APA StylePejchal, V., Stepankova, S., Padelkova, Z., Imramovsky, A., & Jampilek, J. (2011). 1,3-Substituted Imidazolidine-2,4,5-triones: Synthesis and Inhibition of Cholinergic Enzymes. Molecules, 16(9), 7565-7582. https://doi.org/10.3390/molecules16097565