Anti-bacterial Treatment of Polyethylene by Cold Plasma for Medical Purposes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Surface Wettability
Sample | θw (°) | θe (°) | θg (°) | θd (°) | θf (°) | γ− (mN/m) | γ+ (mN/m) | γAB (mN/m) | γLW (mN/m) | γtot (mN/m) | GY(%) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 99.2 (±0.6) | 70.9 (±1.2) | 85.3 (±0.9) | 48.4 (±1.2) | 80.7 (±0.9) | 1.0 | 0.1 | 0.7 | 34.5 | 35.2 | - |
2 | 77.5 (±1.1) | 51.0 (±2.8) | 67.1 (±2.8) | 36.0 (±1.2) | 52.8 (±1.5) | 6.6 | 0.1 | 1.1 | 41.4 | 42.6 | 0.0 |
3 | 66.9 (±0.7) | 32.1 (±2.4) | 57.2 (±2.7) | 32.5 (±1.6) | 37.0 (±2.0) | 10.4 | 0.5 | 4.5 | 43.7 | 48.1 | 0.5 |
4 | 75.8 (±1.6) | 36.1 (±0.7) | 60.4 (±1.0) | 30.5 (±1.5) | 48.3 (±1.2) | 5.0 | 0.4 | 2.8 | 44.0 | 46.8 | 1.8 |
5 | 76.7 (±0.5) | 38.1 (±2.5) | 63.2 (±2.72) | 30.0 (±1.6) | 50.4 (±1.5) | 5.2 | 0.2 | 2.0 | 44.4 | 46.4 | 2.0 |
2.2. Adhesive Properties
2.3. Surface Morphology
2.4. Surface Chemistry
2.4.1. Analysis of FT-IR-ATR Spectra
2.4.2. Analysis of XPS Spectra
Sample | C1s | N1s | O1s | Na1s | Cl2p | S2p |
---|---|---|---|---|---|---|
1 | 100 | 0 | 0 | |||
2 | 76.3 | 4.0 | 19.8 | |||
3 | 84.1 | / | 15.6 | 0.4 | ||
4 | 89.1 | 2.0 | 8.4 | 0.4 | 0.2 | |
5 | 86.8 | 6.7 | 5.0 | 1.5 |
2.4.3. Antibacterial Activity Assessment
LDPE | Inhibition zone (mm2) | Average value (mm2) | ||
---|---|---|---|---|
1 | 2 | 3 | ||
Escherichia coli | ||||
Sample 1 | 0 | 0 | 0 | 0 |
Sample 2 | 0 | 0 | 0 | 0 |
Sample 3 | 0 | 0 | 0 | 0 |
Sample 4 | 105.8 | 118.3 | 121.2 | 115.1 |
Sample 5 | 40.2 | 43.8 | 42.5 | 42.2 |
Staphylococcus aureus | ||||
Sample 1 | 0 | 0 | 0 | 0 |
Sample 2 | 0 | 0 | 0 | 0 |
Sample 3 | 0 | 0 | 0 | 0 |
Sample 4 | 475.0 | 496.3 | 507.9 | 493.1 |
Sample 5 | 286.4 | 279.3 | 298.5 | 288.1 |
3. Experimental
3.1. Materials
3.2. Plasma Treatment
3.3. Grafting by PAA
3.4. Antibacterial Immobilization
3.5. Surface Wettability Evaluation
3.6. Adhesive Properties Assessment
3.7. Surface Topography Analysis
3.8. Surface Chemistry Investigation
3.8.1. XPS
3.8.2. FT-IR-ATR
3.9. In Vitro Antibacterial Test
4. Conclusions
Acknowledgements
- Sample Availability: Samples of the compounds are available from the authors.
References and Notes
- Zhang, W.; Luo, Y.; Wang, H.; Jiang, J.; Pu, S.; Chu, P.K. Ag and Ag/N2 plasma modification of polyethylene for the enhancement of antibacterial properties and cell growth/proliferation. Acta Biomater. 2008, 4, 2028–2036. [Google Scholar] [CrossRef]
- Kuzuya, M.; Sawa, T.; Mouri, M.; Kondo, S.I.; Takai, O. Plasma technique for the fabrication of a durable functional surface on organic polymers. Surf. Coatings Technol. 2003, 169-170, 587–591. [Google Scholar] [CrossRef]
- Zhang, W.; Chu, P.K.; Ji, J.; Zhang, Y.; Fu, R.K.Y.; Yan, Q. Antibacterial properties of plasma-modified and triclosan or bronopol coated polyethylene. Polymer 2006, 47, 931–936. [Google Scholar] [CrossRef]
- Costa, F.; Carvalho, I.F.; Montelaro, R.C.; Gomes, P.; Martins, M.C. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 2011, 7, 1431–1440. [Google Scholar] [CrossRef]
- Goddard, J.M.; Hotchkiss, J.H. Tailored functionalization of low-density polyethylene surfaces. J. Appl. Polym. Sci. 2008, 108, 2940–2949. [Google Scholar] [CrossRef]
- Faucheux, N.; Schweiss, R.; Lutzow, K.; Wemer, C.; Groth, T. Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 2004, 25, 2721–2730. [Google Scholar] [CrossRef]
- Michael, K.E.; Vernekar, V.N.; Keselowsky, B.G.; Meredith, J.C.; Latour, R.A.; Garcia, A.J. Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir 2003, 19, 8033–8040. [Google Scholar] [CrossRef]
- Keselowsky, B.G.; Collard, D.M.; Garcia, A.J.J. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. A 2003, 66, 247–259. [Google Scholar]
- Luk, Y.Y.; Kato, M.; Mrksich, M. Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 2000, 16, 9604–9608. [Google Scholar] [CrossRef]
- Vesel, A.; Junkar, I.; Cvelbar, U.; Kovac, J.; Mozetic, M. Surface modification of polyester by oxygen and nitrogen-plasma treatment. Surf. Interface Anal. 2008, 40, 1444–1453. [Google Scholar] [CrossRef]
- Drnovská, H.; Lapčík, L., Jr.; Buršíková, V.; Zemek, J.; Barros-Timmons, A.M. Surface properties of polyethylene after low-temperature plasma treatment. Colloid Polym. Sci. 2003, 281, 1025–1033. [Google Scholar] [CrossRef]
- Novák, I.; Števiar, M.; Chodák, I.; Krupa, I.; Nedelčev, T.; Špírková, M.; Chehimi, M.M.; Mosnáček, J.; Kleinová, A. Study of adhesion and surface properties of low density polyethylene pre-treated by cold discharge plasma. Polym. Adv. Technol. 2007, 18, 97–105. [Google Scholar] [CrossRef]
- Olifirenko, A.S.; Novak, I.; Rozova, E.Y.; Saprykina, N.N.; Mitilineos, A.G.; Elyashevich, G.K. Hydrophilization of porous polyethylene films by cold plasma of different types. Polym. Sci. 2009, 51, 247–255. [Google Scholar]
- Lloyd, G.; Friedman, G.; Jafri, S.; Schultz, G.; Fridman, A.; Harding, K. Gas plasma: Medical uses and developments in wound care. Plasma Process. Polym. 2010, 7, 194–211. [Google Scholar] [CrossRef]
- Sanchis, R.; Fenollar, O.; García, D.; Sánchez, L.; Balart, R. Improved adhesion of LDPE films to polyolefin foams for automotive industry using low-pressure plasma. Int. J. Adh. Adhesives 2008, 28, 445–451. [Google Scholar] [CrossRef]
- Pappas, D. Status and potential of atmospheric plasma processing of materials. J. Vac. Sci. Technol. A 2011, 29, 020801:1–020801:17. [Google Scholar]
- Yang, L.; Chen, J.; Guo, Y.; Zhan, Z. Surface modification of a biomedical polyethylene terephthalate (PET) by air plasma. Appl. Surf. Sci. 2009, 255, 4446–4451. [Google Scholar] [CrossRef]
- Černák, M.; Černáková, L’.; Hudec, I.; Kováčik, D.; Zahoranová, A. Diffuse coplanar surface barrier discharge and its applications for in-line processing of low-added-value materials. Eur. Phys. J. Appl. Phys. 2009, 47, 22806:1–22806:6. [Google Scholar]
- Šimor, M.; Ráheľ, J.; Vojtek, P.; Černák, M.; Brablec, A. Atmospheric-pressure diffuse coplanar surface discharge for surface treatments. Appl. Phys. Lett. 2002, 81, 2716–2718. [Google Scholar] [CrossRef]
- Černák, M.; Ráheľ, J.; Kováčik, D.; Šimor, M.; Brablec, A.; Slavíček, P. Generation of thin surface plasma layers for atmospheric-pressure surface treatments. Contrib. Plasma Phys. 2004, 44, 492–495. [Google Scholar] [CrossRef]
- John, P.I. Plasma Sciences and the Creation of Wealth; Tata McGraw-Hill: New Delhi, India, 2005; p. 80. [Google Scholar]
- Šíra, M.; Trunec, D. Surface modification of polyethylene and polypropylene in atmospheric pressure glow discharge. J. Phys. D Appl. Phys. 2005, 38, 621–627. [Google Scholar] [CrossRef]
- Sarghini, S.; Paulussen, S.; Terryn, H. DBD Atmospheric Plasma Deposition of Antibacterial Coatings. In Proceedings of the 11th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XI), Oléron Island, France, 7–12 September 2008.
- Newton, A.P.N.; Cadena, S.M.S.C.; Rocha, M.E.M.; Carnieri, E.G.S.; de Oliveira, M.B.M. Effect of triclosan (TRN) on energy-linked functions of rat liver mitochondria. Toxicol. Lett. 2005, 160, 49–59. [Google Scholar] [CrossRef]
- Maia Ribeiro, L.G.M.; Hashizume, L.N.; Maltz, M. The effect of different formulations of chlorhexidine in reducing levels of mutans streptococci in the oral cavity: A systematic review of the literature. J. Dent. 2007, 35, 359–370. [Google Scholar] [CrossRef]
- Kenawy, E.R.; Worley, S.D.; Broughton, R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules 2007, 8, 1359–1384. [Google Scholar] [CrossRef]
- Desmet, T.; Morent, R.; Geyter, N.D.; Leys, C.; Schacht, E.; Dubruel, P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules 2009, 10, 2351–2378. [Google Scholar] [CrossRef]
- Kenawy, E.R.; Worley, S.D.; Broughton, R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules 2007, 8, 1359–1384. [Google Scholar] [CrossRef]
- Denes, F.S.; Manolache, S. Macromolecular plasma-chemistry: An emerging field of polymer science. Prog. Polym. Sci. 2004, 29, 815–885. [Google Scholar] [CrossRef]
- Zhao, B.; Brittain, W.J. Polymer brushes: Surface-immobilized macromolecules. Prog. Polym. Sci. 2000, 25, 677–710. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M.V.; Crawford, R.J.; Ivanova, E.P. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 2011, 7, 2015–2028. [Google Scholar] [CrossRef]
- Işiklan, N.; Kurşun, F.; İnal, M. Graft copolymerization of itaconic acid onto sodium alginate using benzoyl peroxide. Carbohydr. Polym. 2010, 79, 665–672. [Google Scholar] [CrossRef]
- Buršíková, V.; Sťahel, P.; Navrátil, Z.; Buršík, J.; Janča, J. Surface Energy Evaluation of Plasma Treated Materials by Contact Angle Measurement; Masaryk University: Brno, Czech Republic, 2004; pp. 7–25. [Google Scholar]
- Singh, A.; Silverman, J. Radiation processing of polymers. Radiat. Phys. Chem. 1999, 56, 375. [Google Scholar]
- Stuart, B. Infrared Spectroscopy: Fundamentals and Applications; Wiley: New York, NY, USA, 2004. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Popelka, A.; Novák, I.; Lehocký, M.; Chodák, I.; Sedliačik, J.; Gajtanska, M.; Sedliačiková, M.; Vesel, A.; Junkar, I.; Kleinová, A.; et al. Anti-bacterial Treatment of Polyethylene by Cold Plasma for Medical Purposes. Molecules 2012, 17, 762-785. https://doi.org/10.3390/molecules17010762
Popelka A, Novák I, Lehocký M, Chodák I, Sedliačik J, Gajtanska M, Sedliačiková M, Vesel A, Junkar I, Kleinová A, et al. Anti-bacterial Treatment of Polyethylene by Cold Plasma for Medical Purposes. Molecules. 2012; 17(1):762-785. https://doi.org/10.3390/molecules17010762
Chicago/Turabian StylePopelka, Anton, Igor Novák, Marián Lehocký, Ivan Chodák, Ján Sedliačik, Milada Gajtanska, Mariana Sedliačiková, Alenka Vesel, Ita Junkar, Angela Kleinová, and et al. 2012. "Anti-bacterial Treatment of Polyethylene by Cold Plasma for Medical Purposes" Molecules 17, no. 1: 762-785. https://doi.org/10.3390/molecules17010762
APA StylePopelka, A., Novák, I., Lehocký, M., Chodák, I., Sedliačik, J., Gajtanska, M., Sedliačiková, M., Vesel, A., Junkar, I., Kleinová, A., Špírková, M., & Bílek, F. (2012). Anti-bacterial Treatment of Polyethylene by Cold Plasma for Medical Purposes. Molecules, 17(1), 762-785. https://doi.org/10.3390/molecules17010762