An Adaptive Single-Well Stochastic Resonance Algorithm Applied to Trace Analysis of Clenbuterol in Human Urine
Abstract
:1. Introduction
2. Theory and Algorithm
2.1. Theory of Single-Well Potential Stochastic Resonance
2.2. Genetic Algorithm
- Ns = subpopulation size (Ns = N/K).
- Step 1: Start with a random initial population P0. Set t = 0.
- Step 2: If the stopping criterion is satisfied, return Pt.
- Step 3: Randomly sort population Pt.
- Step 4: For each objective k, k = 1,…, K, perform the following steps:
- Step 4.1: For i = 1 + (k−1)Ns,…,kNs, assign fitness value f(xi) = zk(xi) to the i th solution in the sorted population.
- Step 4.2: Based on the fitness values assigned in Step 4.1, select Ns solutions between the (1 + (k−1)Ns)th and (kNs)th solutions of the sorted population to create subpopulation Pk.
- Step 5: Combine all subpopulations P1,…, Pk and apply crossover and mutation on the combined population to create Pt+1 of size N. Set t = t + 1, go to Step 2.
- The parameters used in implementing GA are as follows:
- Number of individuals: 200;
- Maximum number of generations: 100;
- Precision of variables: 20;
- Generation gap: 0.7;
3. Results and Discussion
3.1. Optimization of System Parameter
3.2. Quantitative Analysis of Clenbuterol in Urine
Conc. (ng/mL) | 0.2 | 0.5 | 1 | 2 | 5 | 10 | 20 |
---|---|---|---|---|---|---|---|
Ratio( f ) | 0.243 | 0.465 | 0.917 | 1.689 | 3.311 | 6.918 | 14.716 |
Calibration Curve | f = 0.722C + 0.0453 r = 0.999 |
Added Conc. | Intra-day assay | Inter-day assay | ||||
---|---|---|---|---|---|---|
Measured Conc. | Precision | Accuracy | Measured Conc. | Precision | Accuracy | |
(ng/mL) | (mean ± S.D.) (ng/mL) | R.S.D (%) | (%) | (mean ± S.D.) (ng/mL) | R.S.D (%) | (%) |
0.5 | 0.55 ± 0.04 | 7.6 | 109.5 | 0.56 ± 0.05 | 8.7 | 111.9 |
2.0 | 2.07 ± 0.12 | 5.8 | 103.5 | 1.87 ± 0.14 | 7.3 | 93.4 |
10.0 | 9.60 ± 0.53 | 5.5 | 96.0 | 9.87 ± 0.55 | 5.6 | 98.7 |
4. Experimental
4.1. Materials and Reagents
4.2. Standard Solution
4.3. Sample Preparation
4.4. LC/MS Analysis
5. Conclusions
Acknowledgements
- Sample Availability: Contact the authors.
References and Notes
- Permann, D.N.S.; Teitelbaum, H. Wavelet fast Fourier transform (WFFT) analysis of a millivolt signal for a transient oscillating chemical reaction. J. Phys. Chem. 1993, 97, 12670–12673. [Google Scholar] [CrossRef]
- Muddiman, D.C.; Huang, B.M.; Anderson, G.A.; Rockwood, A.; Hofstadler, S.A.; Weir-Lipton, M.S.; Proctor, A.; Qinyuan, W.; Smith, R.D. Application of sequential paired covariance to liquid chromatography-mass spectrometry data Enhancements in both the signal-to-noise ratio and the resolution of analyte peaks in the chromatogram. J. Chromatogr. A 1997, 771, 1–7. [Google Scholar] [CrossRef]
- Vivó-Truyols, G.; Schoenmakers, P.J. Automatic selection of optimal Savitzky-Golay smoothing. Anal. Chem. 2006, 78, 4598–4608. [Google Scholar]
- Wen, X.; Zhang, H.; Wang, F. A Wavelet Neural Network for SAR Image Segmentation. Sensors 2009, 9, 7509–7515. [Google Scholar] [CrossRef]
- Pan, Z.; Guo, W.; Wu, X.; Cai, W.; Shao, S. A new stochastic resonance algorithm to improve the detection limits for trace analysis. Chemom. Intell. Lab. Syst. 2003, 66, 41–49. [Google Scholar] [CrossRef]
- Goris, R.L.T.; Wagemans, J.; Wichmann, F.A. Modelling contrast discrimination data suggest both the pedestal effect and stochastic resonance to be caused by the same mechanism. J. Vis. 2008, 8, 17.1–17.21. [Google Scholar]
- Rallabandi, V.P.; Roy, P.K. Magnetic resonance image enhancement using stochastic resonance in Fourier domain. Magn. Reson. Imaging 2010, 28, 1361–1373. [Google Scholar] [CrossRef]
- Zhang, W.; Xiang, B.; Wu, Y.; Shang, E. Stochastic resonance is applied to quantitative analysis for weak chromatographic signal of glyburide in plasma. Anal. Chim. Acta 2005, 550, 77–81. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, W.; Xiang, B.; Deng, H.; Xie, S. Periodic modulation-based stochastic resonance algorithm applied to quantitative analysis for weak liquid chromatography–mass spectrometry signal of granisetron in plasma. Int. J. Mass Spectrom. 2007, 262, 174–179. [Google Scholar] [CrossRef]
- Ye, Y.; Xiang, B.; Zhang, W.; Shang, E. Stochastic resonance is applied to quantitative analysis for weak chromatographic signal of Sudan I. Phys. Lett. A 2006, 359, 620–623. [Google Scholar] [CrossRef]
- Zhan, Y.; Xiang, B.; Zhang, W.; Xie, S.; Deng, H.; Xiang, S. Single-well potential stochastic resonance applied to quantitative analysis for weak chromatographic signals of sudan IV. Anal. Lett. 2008, 40, 2415–2424. [Google Scholar]
- Xie, S.; Deng, H.; Xiang, B.; Xiang, S. Detection of trace triclocarban in water sample using solid-phase extraction-liquid chromatography with stochastic resonance slgorithm. Environ. Sci. Technol. 2008, 42, 2988–2991. [Google Scholar]
- Xiang, S.; Wang, W.; Xia, J.; Xiang, B.; Ouyang, P. Stochastic resonance algorithm applied to quantitative analysis for weak chromatographic signals of alkyl halides and alkyl benzenes in water samples. J. Chromatogr. Sci. 2009, 47, 700–704. [Google Scholar]
- Pan, Z.X.; Wu, X.J.; Guo, W.M.; Cai, W.S.; Shao, X.G. Studies on the detection of weak chemical signal by using a stochastic resonance algorithm based on periodic modulation. Chem. Res. Chinese U. 2003, 24, 605–608. [Google Scholar]
- Deng, H.; Shang, E.; Xiang, B.; Xie, S.; Tang, Y.; Duan, J.; Zhan, Y.; Chi, Y.; Tan, D. Application of the stochastic resonance algorithm to the simultaneous quantitative determination of multiple weak peaks of ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 563–571. [Google Scholar]
- Stocks, N.G.; Stein, N.D.; McClintock, P.V.E. Stochastic resonance in monostable systems. J. Phys. A: Math. Gen. 1993, 26, L385–L390. [Google Scholar] [CrossRef]
- Zhang, W.; Xiang, B. A new single-well potential stochastic resonance algorithm to detect the weak signal. Talanta 2006, 70, 267–271. [Google Scholar] [CrossRef]
- Liu, F.; Wang, J. Genetic algorithms and its application to spectral analysis. Guang Pu Xue Yu Guang Pu Fen Xi 2001, 21, 331–335. [Google Scholar]
- Dugan, N.; Erkoç, Ş. Genetic algorithms in application to the geometry optimization of nanoparticles. Algorithms 2009, 2, 410–428. [Google Scholar] [CrossRef]
- Asadollahi, T.; Dadfarnia, S.; Shabani, A.M.H.; Ghasemi, J.B.; Sarkhosh, M. QSAR Models for CXCR2 Receptor Antagonists Based on the Genetic Algorithm for Data Preprocessing Prior to Application of the PLS Linear Regression Method and Design of the New Compounds Using In Silico Virtual Screening. Molecules 2011, 16, 1928–1955. [Google Scholar] [CrossRef]
- World Anti-Doping Agency. The World Anti-Doping Code. The 2011 prohibited list international standard; 1 January 2011; (accessed on 22 April 2011). Available online: http://www.wada-ama.org/Documents/World_Anti-Doping_Program/WADP-Prohibited-list/To_be_effective/WADA_Prohibited_List_2011_EN.pdf.
- Lai, W.H.; Fung, D.Y.; Xu, Y.; Xiong, Y.H. Screening procedures for clenbuterol residue determination in raw swine livers using lateral-flow assay and enzyme-linked immunosorbent assay. J. Food Prot. 2008, 71, 865–869. [Google Scholar]
- Liu, N.; Su, P.; Gao, Z.; Zhu, M.; Yang, Z.; Pan, X.; Fang, Y.; Chao, F. Simultaneous detection for three kinds of veterinary drugs: Chloramphenicol,clenbuterol and 17-beta-estradiol by high-throughput suspension array technology. Anal. Chim. Acta 2009, 632, 128–134. [Google Scholar] [CrossRef]
- Pleadin, J.; Vulić, A.; Mitak, M.; Perši, N.; Milić, D. Determination of clenbuterol residues in retinal tissue of food-producing pigs. J. Anal. Toxicol. 2011, 35, 28–31. [Google Scholar] [CrossRef]
- He, L.; Su, Y.; Zeng, Z.; Liu, Y.; Huang, X. Determination of ractopamine and clenbuterol in feeds by gas chromatography–mass spectrometry. Anim. Feed Sci. Tech. 2007, 132, 316–323. [Google Scholar] [CrossRef]
- Gallo, P.; Brambilla, G.; Neri, B.; Fiori, M.; Testa, C.; Serpe, L. Purification of clenbuterol-like β2-agonist drugs of new generation from bovine urine and hair by α1-acid glycoprotein affinity chromatography and determination by gas chromatography–mass spectrometry. Anal. Chim. Acta 2007, 587, 67–74. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.L.; Yang, T.; Zhang, Y.; Huang-Fu, W.G. Simultaneous determination of clenbuterol, salbutamol and ractopamine in milk by reversed-phase liquid chromatography tandem mass spectrometry with isotope dilution. J. Chromatogr. A 2010, 1217, 7873–7877. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Yang, T. Simultaneous determination of clenbuterol, chloramphenicol and diethylstilbestrol in bovine milk by isotope dilution ultraperformance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2011, 879, 799–803. [Google Scholar]
- Zuo, P.; Zhang, Y.; Liu, J.; Ye, B.C. Determination of beta-adrenergic agonists by hapten microarray. Talanta 2010, 82, 61–66. [Google Scholar] [CrossRef]
- Gammaitoni, L.; Hanggi, P.; Jung, P.; Marchesoni, F. Stochastic resonance. Rev. Modern Phys. 1998, 70, 223–287. [Google Scholar] [CrossRef]
- Schaffer, J.D. Multiple objective optimization with vector evaluated genetic algorithms. In In Proceedings of the International Conference on Genetic Algorithms and their Applications, Pittsburgh, PA, USA; 24–26 July 1985. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, W.; Xiang, S.; Xie, S.; Xiang, B. An Adaptive Single-Well Stochastic Resonance Algorithm Applied to Trace Analysis of Clenbuterol in Human Urine. Molecules 2012, 17, 1929-1938. https://doi.org/10.3390/molecules17021929
Wang W, Xiang S, Xie S, Xiang B. An Adaptive Single-Well Stochastic Resonance Algorithm Applied to Trace Analysis of Clenbuterol in Human Urine. Molecules. 2012; 17(2):1929-1938. https://doi.org/10.3390/molecules17021929
Chicago/Turabian StyleWang, Wei, Suyun Xiang, Shaofei Xie, and Bingren Xiang. 2012. "An Adaptive Single-Well Stochastic Resonance Algorithm Applied to Trace Analysis of Clenbuterol in Human Urine" Molecules 17, no. 2: 1929-1938. https://doi.org/10.3390/molecules17021929
APA StyleWang, W., Xiang, S., Xie, S., & Xiang, B. (2012). An Adaptive Single-Well Stochastic Resonance Algorithm Applied to Trace Analysis of Clenbuterol in Human Urine. Molecules, 17(2), 1929-1938. https://doi.org/10.3390/molecules17021929