Acylated mono-, bis- and tris- Cinchona-Based Amines Containing Ferrocene or Organic Residues: Synthesis, Structure and in Vitro Antitumor Activity on Selected Human Cancer Cell Lines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Model Compounds
2.2. Theoretical Calculations
2.3. Structure Determination
2.4. In Vitro Activity of the Compounds on Human Tumor Cell Cultures
Cell line | ||||
HepG2 | SH-SY5Y | HL-60 | MCF-7 | |
Compd. | Cytotoxicity (IC50a in µM) | |||
1 | >100 | >100 | >100 | > 100 |
2 | 33.10 ± 3.04 | 29.80 ± 4.24 | 37.70 ± 3.67 | 25.32 ± 4.60 |
3 | 0.72 ± 0.01 | 0.78 ± 0.02 | 1.70 ± 0.05 | 0.75 ± 0.02 |
4 | 4.24 ± 1.12 | 0.82 ± 0.54 | 0.86 ± 0.02 | 21.70 ± 3.23 |
5 | >100 | >100 | 6.70 ± 0.02 | >100 |
6 | 17.60 ± 0.25 | 21.20 ± 3.24 | 32.20 ± 4.67 | >100 |
7 | 3.34 ± 1.02 | 0.84 ± 0.02 | 1.80 ± 0.56 | 5.34 ± 1.78 |
8 | 8.90 ± 0.23 | 1.50 ± 0.02 | 2.30 ± 0.05 | >100 |
Cytostatic effect (IC50 in µM) | ||||
1 | >100 | >100 | >100 | > 100 |
2 | 65.00 ± 6.70 | 80.70 ± 5.78 | 41.90 ± 1.45 | 56.00 ± 4.56 |
3 | 0.40 ± 0.17 | 0.99 ± 0.10 | 0.76 ± 0.01 | 1.00 ± 0.34 |
4 | 3.40 ± 0.12 | 1.30 ± 0.54 | 0.94 ± 0.02 | 5.10 ± 0.67 |
5 | >100 | >100 | 6.50 ± 3.56 | 21.80 ± 3.18 |
6 | 65.60 ± 3.40 | 82.90 ± 6.78 | >100 | 82.90 ± 7.98 |
7 | 4.60 ± 0.02 | 4.20 ± 2.30 | 10.20 ± 1.65 | 3.89 ± 1.18 |
8 | 19.60 ± 2.12 | 17.20 ± 3.45 | 4.50 ± 0.01 | 2.36 ± 0.01 |
3. Experimental
3.1. General
3.2.Synthesis of the Novel Quinine Derivatives
3.2.1. N-{(S)-[(2S,4R,8R)-8-Ethylquinuclidin-2-yl](6-methoxyquinolin-4-yl)methyl)}ferrocene-carboxamide (2)
3.2.2. N-{(S)-[(2S,4R,8R)-8-Ethylquinuclidin-2-yl](6-methoxyquinolin-4-yl)methyl)}ferrocene-1,1'-bis-carboxamide (3)
3.2.3. 1,1'-(Ferrocene-1,1'-diyl)-bis-{3-[(S)-((2S,4R,8R)-8-ethylquinuclidin-2-yl](6-methoxyquinolin-4-yl)methyl)}urea (4)
3.2.4. 1,1'-(Ferrocene-1,1'-dicarbonyl-diyl)-bis-{3-[(S)-((2S,4R,8R)-8-ethylquinuclidin-2-yl](6-methoxyquinolin-4-yl)methyl)}thiourea (5)
3.2.5. 1-Benzoyl-3-[(S)-((2S,4R,8R)-8-ethylquinuclidin-2-yl](6-methoxyquinolin-4-yl)methyl)thiourea (6)
3.2.6. 1,3-Bis-{(S)-[(2S,4R 8R)-8-ethylquinuclidin-2-yl](6-methoxyquinolin-4-yl)methyl)}thiourea (7)
3.2.7. N-{(S)-[(2S,4R,8R)-8-Ethylquinuclidin-2-yl](6-methoxyquinolin-4-yl)methyl)}benzene-1,3,5-tris-carboxamide (8)
3.3. In Vitro Cytostatic and Cytotoxic Activity of the Compounds
4. Conclusions
Acknowledgments
- Sample Availability: Samples of the compounds 2–8 are available from the authors.
References and Notes
- Ding, Y.; Bao, Y.; An, L. Progress in antitumor agents, vinblastine analogues. Zhongguo Yiyao Gongye Zazhi 2005, 36, 424–428. [Google Scholar]
- Gao, H. Research status of antitumor drug camptothecin and its derivatives. Hebei Yiyao 2008, 30, 1786–1788. [Google Scholar]
- Prudhomme, M. Staurosporines and structurally related indolocarbazoles as antitumor agents. Anticancer Agents Nat. Prod. 2005, 499–517. [Google Scholar]
- Ohashi, M.; Oki, T. Ellipticine and related anticancer agents. Expert Opin. Ther. Pat. 1996, 6, 1285–1294. [Google Scholar] [CrossRef]
- Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem. 2010, 45, 3245–3264. [Google Scholar] [CrossRef]
- Wolf, R.; Baroni, A.; Greco, R.; Donnarumma, G.; Ruocco, E.; Tufano, M.A.; Ruocco, V. Quinine sulfate and bacterial invasion. Ann. Clin. Microbiol. Antimicrob. 2002, 1–5. [Google Scholar]
- Kelsey, F.E.; Brunschwig, A. Concentration of quinine in gastrointestinal cancers; preliminary report. Cancer Res. 1947, 7, 355–356. [Google Scholar]
- Kim, J.; Lee, K.; Jung, W.; Lee, O.; Kim, T.; Kim, H.; Lee, J.; Passaro, D.J. Validity of serum pepsinogen levels and quininium resin test combined for gastric cancer screening. Cancer Detect. Prev. 2005, 29, 570–575. [Google Scholar] [CrossRef]
- Lehnert, M.; Dalton, W.S.; Roe, D.; Emerson, S.; Salmon, S.E. Synergistic inhibition by verapamil and quinine of P-glycoprotein-mediated multidrug resistance in a human myeloma cell line model. Blood 1991, 77, 348–354. [Google Scholar]
- Taylor, C.W.; Dalton, W.S.; Mosley, K.; Dorr, R.T.; Salmon, S.E. Combination chemotherapy with cyclophosphamide, vincristine, adriamycin, and dexamethasone (CVAD) plus oral quinine and verapamil in patients with advanced breast cancer. Breast Cancer Res. Treat. 1997, 42, 7–14. [Google Scholar] [CrossRef]
- Genne, P.; Dimanche-Boitrel, M.T.; Mauvernay, R.Y.; Gutierrez, G.; Duchamp, O.; Petit, J.M.; Martin, F.; Chauffert, B. Cinchonine, a potent efflux inhibitor to circumvent anthracycline resistance in vivo. Cancer Res. 1992, 52, 2797–2801. [Google Scholar]
- Baraniak, D.; Kacprzak, K.; Celewicz, L. Synthesis of 3′-azido-3′-deoxythymidine (AZT) cinchona alkaloid conjugates via click chemistry: Toward novel fluorescent markers and cytostatic agents. Bioorg. Med. Chem. Lett. 2011, 21, 723–726. [Google Scholar] [CrossRef]
- Sohue, N. Quinine derivatives and the transplantable tumor. III. The effect of quinine derivatives upon the growth rate of Fujinawa's rat sarcoma in the tissue culture. Folia Pharm. Jpn. 1941, 31, 1–7. [Google Scholar]
- Sakai, S.; Minoda, K.; Saito, G.; Akagi, S.; Ueno, A.; Fukuoka, F. The anticancer action of quinoline derivatives. Gann 1955, 46, 605–616. [Google Scholar]
- Fiorina, V.J.; Dubois, R.J.; Brynes, S. Ferrocenyl polyamines as agents for the chemoimmunotherapy of cancer. J. Med. Chem. 1978, 21, 393–395. [Google Scholar] [CrossRef]
- Koepf-Maier, P.; Koepf, H.; Neuse, E.W. Ferrocenium salts—The first antitumor iron compounds. Angew. Chem. Int. Ed. 1984, 96, 446–447. [Google Scholar] [CrossRef]
- Neuse, E.W.; Kanzawa, F. Evaluation of the activity of some water-soluble ferrocene and ferricenium compounds against carcinoma of the lung by the human tumor clonogenic assay. Appl. Org.-Met. Chem. 1990, 4, 19–26. [Google Scholar]
- Snegur, L.V.; Nekrasov, S.; Gumenyuk, V.V.; Zhilina, Z.V.; Morozova, N.B.; Skviridova, I.K.; Rodina, I.A.; Sergeeva, N.S.; Shchitkov, K.G.; et al. Ferrocenylalkylazoles, a new class of low-toxicity compounds with antitumor activity. Rossiiskii Khim. Zhurn. 1998, 42, 178–183. [Google Scholar]
- Osella, D.; Ferrali, M.; Zanello, P.; Laschi, F.; Fontani, M.; Nervi, C.; Cavigiolio, G. On the mechanism of the antitumor activity of ferrocenium derivative. Inorg. Chim. Acta 2000, 306, 42–48. [Google Scholar] [CrossRef]
- Gormen, M.; Pigeon, P.; Top, S.; Vessieres, A.; Plamont, M.A.; Hillard, E.A.; Jaouen, G. Facile synthesis and strong antiproliferative activity of disubstituted diphenylmethylidenyl-[3]ferrocenophanes on breast and prostate cancer cell lines. Med. Chem. Commun. 2010, 1, 149–151. [Google Scholar] [CrossRef]
- Monserrat, J.P.; Chabot, G.G.; Hamon, L.; Quentin, L.; Scherman, D.; Jaouen, G.; Hillard, E.A. Synthesis of cytotoxic ferrocenyl flavones via a ferricenium-mediated 1,6-oxidative cyclization. Chem. Commun. 2010, 46, 5145–5147. [Google Scholar] [CrossRef]
- Hillard, E.A.; Vessieres, A.; Thouin, L.; Jaouen, G.; Amatore, C. Ferrocene-mediated proton-coupled electron transfer in a series of ferrocifen -type breast-cancer drug candidates. Angew. Chem. Int. Ed. 2006, 45, 285–290. [Google Scholar]
- Li, H.; Lv, P.; Yan, T.; Zhu, H. Urea derivatives as anticancer agents. Anticancer Agents Med. Chem. 2009, 9, 471–480. [Google Scholar]
- Jordan, A.M.; Khan, T.H.; Malkin, H.; Osborn, H.M.I. Synthesis and analysis of urea and carbamate prodrugs as candidates for melanocyte-directed enzyme prodrug therapy (MDEPT). Bioorg. Med. Chem. 2002, 10, 2625–2633. [Google Scholar] [CrossRef]
- Ma, Z.; Saluta, G.; Kucera, G.L.; Bierbach, U. Effect of linkage geometry on biological activity in thiourea and guanidine-substituted acridines and platinum-acridines. Bioorg. Med. Chem. Lett. 2008, 18, 3799–3801. [Google Scholar] [CrossRef]
- Cesarini, S.; Spallarossa, A.; Ranise, A.; Schenone, S.; Rosano, C.; La Colla, P.; Sanna, G.; Busonera, B.; Loddo, R. N-Acylated and N,N'-diacylated imidazolidine-2-thione derivatives and N,N'-diacylated tetrahydropyrimidine-2(1H)-thione analogues: Synthesis and antiproliferative activity. Eur. J. Med. Chem. 2009, 44, 1106–1118. [Google Scholar] [CrossRef]
- Rao, X.; Wu, Y.; Song, Z.; Shang, S.; Wang, Z. Synthesis and antitumor activities of unsymmetrically disubstituted acylthioureas fused with hydrophenanthrene structure. Med. Chem. Res. 2011, 20, 333–338. [Google Scholar] [CrossRef]
- Suda, Y.; Egami, K.; Fujita, H. Preparation of acylthiourea compounds as c-Met kinase inhibitors. PCT Int. Appl. 2009, 79. [Google Scholar]
- Ruat, M.; Faure, H.; Traiffort, E.; Schoenfelder, A.; Mann, A.; Taddei, M.; Solinas, A.; Manetti, F. Preparation of aromatic N- acylthiourea and N-acylurea as inhibitors of the Hedgehog protein signalling pathway for the treatment of cancer, neurodegenerative diseases and diabetes. Fr. Demande 2009, 57. [Google Scholar]
- Garcia-Martin, F.; Cruz, L.J.; Rodriguez-Mias, R.A.; Giralt, E.; Albericio, F. Design and synthesis of FAJANU: A de Novo C2 symmetric cyclopeptide family. J. Med. Chem. 2008, 51, 3194–3202. [Google Scholar] [CrossRef]
- Manna, C.M.; Tshuva, E.Y. arkedly different cytotoxicity of the two enantiomers of C2-symmetrical Ti(IV) phenolato complexes; mechanistic implications. Dalton T. 2010, 39, 1182–1184. [Google Scholar] [CrossRef]
- Rabouin, D.; Perron, V.; N'Zemba, B.C.; Gaudreault, R.; Berube, G. A facile synthesis of C2-symmetric 17b-estradiol dimers. Bioorg. Med. Chem. Lett. 2003, 13, 557–560. [Google Scholar] [CrossRef]
- Raynes, K.; Galatis, D.; Cowman, A.F.; Tilley, L.; Deady, L.W. Synthesis and activity of some antimalarial bisquinolines. J. Med. Chem. 1995, 38, 204–206. [Google Scholar] [CrossRef]
- Ayad, F.; Tilley, L.; Deady, L.W. Synthesis, antimalarial activity and inhibition of haem detoxification of novel bisquinolines. Bioorg. Med. Chem. Lett. 2001, 11, 2075–2077. [Google Scholar]
- Cowman, A.F.; Deady, L.W.; Deharo, E.; Desneves, J.; Tilley, L. Synthesis and activity of some antimalarial bisquinolinemethanols. Aust. J. Chem. 1997, 50, 1091–1096. [Google Scholar] [CrossRef]
- Brunner, H.; Buegler, J. Enantioselective catalysis. 106. 9-Amino-(9-deoxy)cinchona alkaloids and their derivatives. B. Soc. Chim. Belg. 1997, 106, 77–84. [Google Scholar]
- Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts. Org. Lett. 2005, 7, 1967–1969. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. GAUSSIAN 03, Rev. A. 1; Gaussian, Inc.: Pittsburgh, PA, USA, 2003. [Google Scholar]
- Galow, T.H.; Rodrigo, J.; Cleary, K.; Cooke, G.; Rotello, V.M. Fluorocarbonylferrocene. A versatile intermediate for ferrocene esters and amides. J. Org. Chem. 1999, 64, 3745–3746. [Google Scholar] [CrossRef]
- Van Leusen, D.; Hessen, B. 1,1'-Diisocyanoferrocene and a convenient synthesis of ferrocenylamine. Organometallics 2001, 20, 224–226. [Google Scholar]
- Yuan, Y.; Ye, S.; Zhang, L.; Wang, B.; Xu, Y.; Wang, J.; Wang, H. Studies on intramolecular hydrogen bonding of 1,1'-bis[N-formyl-N'-p-chlorophenylthiourea]ferrocene. Inorg. Chim. Acta 1997, 256, 313–318. [Google Scholar] [CrossRef]
- Slater, T.F.; Sawyer, B.; Sträuli, U. Studies on succinate-tetrazolium reductase systems: III. Points of coupling of four different tetrazolium salts III. Points of coupling of four different tetrazolium salts. Biochim. Biophys. Acta 1963, 77, 383–393. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Liu, Y.B.; Peterson, D.A.; Kimura, H.; Schubert, D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J. Neurochem. 1997, 69, 581–593. [Google Scholar]
- Altman, F.P. Tetrazolium salts and formazans. Prog. Histochem. Cytochem. 1976, 9, 1–56. [Google Scholar] [CrossRef]
- Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 1986, 89, 271–277. [Google Scholar] [CrossRef]
- Datki, Z.; Juhász, A.; Gálfi, M.; Soós, K.; Papp, R.; Zádori, D.; Penke, B. Method for measuring neurotoxicity of aggregating polypeptides with the MTT assay on differentiated neuroblastoma cells. Brain Res. Bull. 2003, 62, 223–229. [Google Scholar]
- Datki, Z.; Papp, R.; Zádori, D.; Soós, K.; Fülöp, L.; Juhász, A.; Laskay, G.; Hetényi, C.; Mihalik, E.; Zarándi, M.; Penke, B. In vitro model of neurotoxicity of Aβ 1-42 and neuroprotection by a pentapeptide: irreversible events during the first hour. Neurobiol. Dis. 2004, 17, 507–515. [Google Scholar]
- Biedler, J.L.; Roffler-Tarlov, S.; Schachner, M.; Freedman, L.S. Multiple Neurotransmitter Synthesis by Human Neuroblastoma Cell Lines and Clones. Cancer Res. 1978, 38, 3751–3757. [Google Scholar]
- Biedler, J.L.; Helson, L.; Spengler, B.A. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 1973, 33, 2643–2652. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Károlyi, B.I.; Bősze, S.; Orbán, E.; Sohár, P.; Drahos, L.; Gál, E.; Csámpai, A. Acylated mono-, bis- and tris- Cinchona-Based Amines Containing Ferrocene or Organic Residues: Synthesis, Structure and in Vitro Antitumor Activity on Selected Human Cancer Cell Lines. Molecules 2012, 17, 2316-2329. https://doi.org/10.3390/molecules17032316
Károlyi BI, Bősze S, Orbán E, Sohár P, Drahos L, Gál E, Csámpai A. Acylated mono-, bis- and tris- Cinchona-Based Amines Containing Ferrocene or Organic Residues: Synthesis, Structure and in Vitro Antitumor Activity on Selected Human Cancer Cell Lines. Molecules. 2012; 17(3):2316-2329. https://doi.org/10.3390/molecules17032316
Chicago/Turabian StyleKárolyi, Benedek Imre, Szilvia Bősze, Erika Orbán, Pál Sohár, László Drahos, Emese Gál, and Antal Csámpai. 2012. "Acylated mono-, bis- and tris- Cinchona-Based Amines Containing Ferrocene or Organic Residues: Synthesis, Structure and in Vitro Antitumor Activity on Selected Human Cancer Cell Lines" Molecules 17, no. 3: 2316-2329. https://doi.org/10.3390/molecules17032316
APA StyleKárolyi, B. I., Bősze, S., Orbán, E., Sohár, P., Drahos, L., Gál, E., & Csámpai, A. (2012). Acylated mono-, bis- and tris- Cinchona-Based Amines Containing Ferrocene or Organic Residues: Synthesis, Structure and in Vitro Antitumor Activity on Selected Human Cancer Cell Lines. Molecules, 17(3), 2316-2329. https://doi.org/10.3390/molecules17032316