Coupling of Nanoporous Chromium, Aluminium-Containing Silicates with an Ionic Liquid for the Transformation of Glucose into 5-(Hydroxymethyl)-2-furaldehyde
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterisation of the Catalysts
Sample | Si/Al | Si/Cr | SBET (m2·g−1) | Vp (cm3·g−1) | PSD (pore width, nm) |
---|---|---|---|---|---|
Al-TUD-1 | 20 | - | 726 (789) | 0.64 (0.69) | 2.5–7 (2.5–7) |
CrAl-TUD-1 | 27 | 108 | 763 (995) | 0.78 (0.95) | 2.5–7 (2.5–7) |
Cr-TUD-1 | - | 150 | 484 (515) | 1.02 (1.14) | 3–17 (3–17) |
BEA | 12 | - | 634 | 0.74 | - |
Cr-BEA | 13 | 47 | 702 (793) | 0.87 (0.75) | - |
BEA/TUD-1 | 31 | - | 685 (722) | 0.78 (0.82) | 2.5–10 (2.5–10) |
Cr-BEA/TUD-1 | 41 | 236 | 802 (717) | 0.92 (0.80) | 2.5–10 (2.5–10) |
2.2. Catalysis
2.2.1. General Considerations
Sample | Catalytic BR | Experiment (i) | Experiment (ii) | Experiment (iii) | ||||
---|---|---|---|---|---|---|---|---|
Conv. b (%) | Yield c (%) | Conv. b (%) | Yield c (%) | Conv. b (%) | Yield c (%) | Conv. b (%) | Yield c (%) | |
Al-TUD-1 | 65 | 9 | 23 | 1 | 64 | 9 | 61 | 9 |
CrAl-TUD-1 | 82 | 54 | 37 | 9 | 70 | 12 | 79 | 59 |
Cr-TUD-1 | 42 | 39 | 18 | 5 | 42 | 24 | 46 | 42 |
BEA | 85 | 13 | 11 | 4 | 80 | 17 | 75 | 15 |
Cr-BEA | 96 | 58 | 39 | 10 | 84 | 28 | 96 | 60 |
BEA/TUD-1 | 75 | 11 | 34 | 4 | 69 | 15 | 70 | 7 |
Cr-BEA/TUD-1 | 65 | 36 | 19 | 2 | 62 | 13 | 66 | 58 |
2.2.2. Catalyst Stability
- (i) The washed and dried solid, referred to as recW(solid acid), was tested in the reaction of Glu, using fresh IL as solvent, at 120 °C for 3 h;
- (ii) The recW solid was calcined (450 °C, 3 h, heating rate of 1 °C·min−1) to give recC(solid acid), which was tested in the reaction of Glu, using fresh IL as solvent, at 120 °C for 3 h;
- (iii) The recovered IL, referred to as recIL(“name of solid”), was used as solvent in a 3 h-batch run of the reaction of Glu, at 120 °C, without adding a solid catalyst.
3. Experimental
3.1. General
3.2. Preparation of Al-TUD-1, CrAl-TUD-1 and Cr-TUD-1
3.3. Preparation of BEA, BEA//TUD-1, Cr-BEA and Cr-BEA/TUD-1
3.4. Catalytic Experiments
4. Conclusions
Acknowledgements
References and Notes
- Ragauskas, J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J., Jr.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489. [Google Scholar]
- Sannigrahi, P.; Pu, Y.; Ragauskas, A. Cellulosic biorefineries-unleashing lignin opportunities. Curr. Opin. Environ. Sustain. 2010, 2, 383–393. [Google Scholar]
- Karinen, R.; Vilonen, K.; Niemel, M. Biorefining: Heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethyl furfural. ChemSusChem 2011, 4, 1002–1016. [Google Scholar]
- Zhao, H.; Holladay, J.E.; Brown, H.; Zhang, Z.C. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 2007, 316, 1597–1600. [Google Scholar]
- Zhao, H.; Holladay, J.E.; Zhang, Z.C. Method for conversion of carbohydrates in ionic liquids to hydroxymethylfurfural. WO Pat. Appl. 2008, 019219A1. [Google Scholar]
- Zhao, H.; Holladay, J.E.; Zhang, Z.C. Methods for conversion of carbohydrates in ionic liquids to value-added chemicals. U.S. Patent 7,939,681 B2, 2011. [Google Scholar]
- Lima, S.; Antunes, M.M.; Pillinger, M.; Valente, A.A. Ionic liquids as tools for the acid-catalyzed hydrolysis/dehydration of saccharides to furanic aldehydes. ChemCatChem 2011, 3, 1686–1706. [Google Scholar]
- Zakrzewska, E.; Bogel-Lukasic, E.; Boguel-Lukasic, R. Ionic liquid-mediated formation of 5-hydroxymethylfurfural-A promising biomass-derived building block. Chem. Rev. 2011, 111, 397–417. [Google Scholar]
- Stählberg, T.; Fu, W.; Woodley, J.M.; Riisager, A. Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: Paving the way to renewable chemicals. ChemSusChem 2011, 4, 451–458. [Google Scholar]
- Rasrendra, C.B.; Makertihartha, I.G.B.N.; Adisasmito, S.; Heeres, H.J. Green chemicals from D-glucose: Systematic studies on catalytic effects of inorganic salts on the chemoselectivity and yield in aqueous solutions. Top. Catal. 2010, 53, 1241–1247. [Google Scholar]
- Peng, L.; Lin, L.; Zhang, J.; Zhuang, J.; Zhang, B.; Gong, Y. Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules 2010, 15, 5258–5272. [Google Scholar]
- Patil, S.K.R.; Lund, C.R.F. Formation and growth of humans via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energ. Fuel. 2011, 25, 4745–4755. [Google Scholar]
- Swatloski, P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975. [Google Scholar]
- Remsing, R.C.; Swatloski, R.P.; Rogers, R.D.; Moyan, G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: A 13C and 35/37Cl-NMR relaxation study on model systems. Chem. Commun. 2006, 1271–1273. [Google Scholar]
- Liebert, T.; Heinze, T. Interaction of ionic liquids with polysaccharides 5. Solvents and reaction media for the modification of cellulose. Bioresources 2008, 3, 576–601. [Google Scholar]
- Pinkert, A.; Marsh, K.N.; Pang, S.; Staiger, M.P. Ionic liquids and their interaction with cellulose. Chem. Rev. 2009, 109, 6712–6728. [Google Scholar]
- Zakrzewska, E.; Bogel-Lukasik, E.; Bogel-Lukasik, R. Solubility of carbohydrates in ionic liquids. Energ. Fuel. 2010, 24, 737–745. [Google Scholar]
- Guo, J.; Zhang, D.; Liu, C. A theoretical investigation of the interactions between cellulose and 1-butyl-3-methylimidazolium chloride. J. Theor. Comput. Chem. 2010, 9, 611–624. [Google Scholar]
- Gupta, K.M.; Hu, Z.; Jiang, J. Mechanistic understanding of interactions between celulose and ionic liquids: A molecular simulation study. Polymer 2011, 52, 5904–5911. [Google Scholar]
- Imperato, G.; König, B.; Chiappe, C. Ionic green solvents from renewable resources. Eur. J. Org. Chem. 2007, 1049–1058. [Google Scholar]
- Tan, M.; Zhao, L.; Zhang, Y. Production of 5-hydroxymethyl furfural from cellulose in CrCl2/Zeolites/BmimCl system. Biomass Bioenerg. 2011, 35, 1367–1370. [Google Scholar]
- Francisco, M.; Mlinar, A.N.; Yoo, B.; Bell, A.T.; Prausnitz, J.M. Recovery of glucose from an aqueous ionic liquid by adsorption onto a zeolite-based solid. Chem. Eng. J. 2011, 172, 184–190. [Google Scholar]
- Zhang, Z.; Zhao, Z.K. Production of 5-hydroxymethylfurfural from glucose catalyzed by hydroxyapatite supported chromium chloride. Bioresource Technol. 2011, 102, 3970–3972. [Google Scholar]
- Gläser, R. Novel process options for the application of zeolites in supercritical fluids and ionic liquids. Chem. Eng. Technol. 2007, 30, 557–568. [Google Scholar]
- Zhang, Y.; Degirmenci, V.; Li, C.; Hensen, E.J.M. Phosphotungstic acid encapsulated in metal-organic framework as catalysts for carbohydrate dehydration to 5-hydroxymethylfurfural. ChemSusChem 2011, 4, 59–64. [Google Scholar]
- Rinaldi, R.; Meine, N.; vom Stein, J.; Palkovits, R.; Schüth, F. Which controls the depolymerization of cellulose in ionic liquids: The solid acid catalyst or cellulose? ChemSusChem 2010, 3, 266–276. [Google Scholar] [CrossRef]
- Telalović, S.; Ramanathan, A.; Mul, G.; Hanefeld, U. TUD-1: Synthesis and application of a versatile catalyst, carrier, material. J. Mater. Chem. 2010, 20, 642–658. [Google Scholar]
- Shan, Z.; Jansen, J.C.; Zhou, W.; Maschmeyer, Th. AlTUD-1, stable mesoporous aluminas with high surface areas. Appl. Catal. A Gen. 2003, 254, 339–343. [Google Scholar] [CrossRef]
- Anand, R.; Maheswari, R.; Hanefeld, U. Catalytic properties of the novel mesoporous aluminosilicate AlTUD-1. J. Catal. 2006, 242, 82–91. [Google Scholar]
- Hamdy, M.S.; Berg, O.; Jansen, J.C.; Maschemeyer, T.; Arafat, A.; Moulijn, J.A.; Mul, G. Chromium-incorporated TUD-1 as a new visible light-sensitive photo-catalyst for selective oxidation of propane. Catal. Today 2006, 117, 337–342. [Google Scholar]
- Zhang, Z.-X.; Bai, P.; Xu, B.; Yan, Z.F. Synthesis of mesoporous alumina TUD-1 with high thermostability. J. Porous Mater. 2006, 13, 245–250. [Google Scholar]
- Lima, S.; Antunes, M.M.; Fernandes, A.; Pillinger, M.; Ribeiro, M.F.; Valente, A.A. Acid-catalysed conversion of saccharides into furanic aldehydes in the presence of three-dimensional mesoporous Al-TUD-1. Molecules 2010, 15, 3863–3877. [Google Scholar]
- Telalović, S.; Hanefeld, U. Noncovalent immobilization of chiral cyclopropanation catalysts on mesoporous TUD-1: Comparison of liquid-phase and gas-phase ion-exchange. Appl. Catal. A Gen. 2010, 372, 217–223. [Google Scholar]
- Janses, J.C.; Shan, Z.; Marchese, L.; Zhou, W.; Puil, N.V.D.; Maschmeyer, Th. A new templating method for three-dimensional mesopore networks. Chem. Commun. 2001, 713–714. [Google Scholar]
- Sing, K.S.W. Characterization of Adsorbents. In Adsorption, Science and Technology; Nato ASI Series; Rodrigues, A.E., LeVan, M.D., Tondeur, D., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 1989; pp. 3–14. [Google Scholar]
- Sangwichien, C.; Aranovich, G.L.; Donohue, M.D. Density functional theory predictions of adsorption isotherms with hysteresis loops. Colloids Surf. A 2002, 206, 313–320. [Google Scholar]
- Blin, J.L.; Léonard, A.; Su, B.L. Well-ordered spherical mesoporous materials CMI-1 synthesized via an assembly of decaoxyethylene cetyl ether and TMOS. Chem. Mater. 2001, 13, 3542–3553. [Google Scholar]
- Waller, P.; Shan, Z.; Marchese, L.; Tartaglione, G.; Zhou, W.; Jansen, J.C.; Maschmeyer, T. Zeolite nanocrystals inside mesoporous TUD-1: A high-performance catalytic composite. Chem. Eur. J. 2004, 10, 4970–4976. [Google Scholar]
- Lima, S.; Antunes, M.M.; Fernandes, A.; Pillinger, M.; Ribeiro, M.F.; Valente, A.A. Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1 composite material. Appl. Catal. A Gen. 2010, 388, 144–148. [Google Scholar]
- Weckhuysen, B.M.; Schoonheydt, R.A.; Jehng, J.-M.; Wachs, I.E.; Cho, S.J.; Ryoo, R.; Kijistra, S.; Poels, E. Combined DRS-RS-EXAFS-XANES-TPR Study of Supported Chromium Catalysts. J. Chem. Soc. Faraday Trans. 1995, 91, 3245–3253. [Google Scholar]
- Weckhuysen, B.M.; Wachs, I.E.; Schoonheydt, R.A. Surface chemistry and spectroscopy of chromium in inorganic oxides. Chem. Rev. 1996, 96, 3327–3349. [Google Scholar]
- Yuvaraj, S.; Palanichamy, M.; Krishnasamy, V. Chromium substitution in a large-pore high-silica zeolite BEA: Synthesis, characterisation and catalytic activity. Chem. Commun. 1996, 2707–2708. [Google Scholar]
- Dzwigaj, S.; Shishido, T. State of chromium in CrSiBEA zeolite prepared by the two-step postsynthesis method: XRD, FTIR, UV-Vis, EPR, TPR, and XAS studies. J. Phys. Chem. C 2008, 112, 5803–5809. [Google Scholar] [CrossRef]
- Binder, J.B.; Raines, R.T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am Chem. Soc. 2009, 131, 1979–1985. [Google Scholar]
- Lima, S.; Antunes, M.M.; Pillinger, M.; Ignatyev, N.; Valente, A.A. Conversion of mono/di/ polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Appl. Catal. A Gen. 2009, 363, 93–99. [Google Scholar]
- Qi, X.; Watanabe, M.; Aida, T.M.; Smith, R.L., Jr. Fast transformation of glucose and di-polysaccharides into 5-hydroxymethylfurfural by microwave heating in an ionic liquid/catalyst system. ChemSusChem 2010, 3, 1071–1077. [Google Scholar]
- Pidko, E.A.; Degirmenci, V.; Santen, R.A.V.; Hensen, E.J.M. Glucose activation by transient Cr2+ dimers. Angew. Chem. Int. Ed. Engl. 2010, 49, 2530–2534. [Google Scholar]
- Sample Availability: Small quantities of the solid acid catalysts are available from the authors on request.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Antunes, M.M.; Lima, S.; Pillinger, M.; Valente, A.A. Coupling of Nanoporous Chromium, Aluminium-Containing Silicates with an Ionic Liquid for the Transformation of Glucose into 5-(Hydroxymethyl)-2-furaldehyde. Molecules 2012, 17, 3690-3707. https://doi.org/10.3390/molecules17043690
Antunes MM, Lima S, Pillinger M, Valente AA. Coupling of Nanoporous Chromium, Aluminium-Containing Silicates with an Ionic Liquid for the Transformation of Glucose into 5-(Hydroxymethyl)-2-furaldehyde. Molecules. 2012; 17(4):3690-3707. https://doi.org/10.3390/molecules17043690
Chicago/Turabian StyleAntunes, Margarida M., Sérgio Lima, Martyn Pillinger, and Anabela A. Valente. 2012. "Coupling of Nanoporous Chromium, Aluminium-Containing Silicates with an Ionic Liquid for the Transformation of Glucose into 5-(Hydroxymethyl)-2-furaldehyde" Molecules 17, no. 4: 3690-3707. https://doi.org/10.3390/molecules17043690
APA StyleAntunes, M. M., Lima, S., Pillinger, M., & Valente, A. A. (2012). Coupling of Nanoporous Chromium, Aluminium-Containing Silicates with an Ionic Liquid for the Transformation of Glucose into 5-(Hydroxymethyl)-2-furaldehyde. Molecules, 17(4), 3690-3707. https://doi.org/10.3390/molecules17043690