Antioxidant, Antimicrobial Properties and Phenolics of Different Solvent Extracts from Bark, Leaves and Seeds of Pongamia pinnata (L.) Pierre
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extract Yields
2.2. Total Phenolics Content (TPC)
Parameters | Solvent extracts | ||||||
---|---|---|---|---|---|---|---|
Bark | Absoluteethanol | Aqueous ethanol | Absolutemethanol | Aqueous methanol | Absoluteacetone | Aqueous acetone | Deionizedwater |
Yield (%) | 12.01 ± 0.36 b | 12.51 ± 0.46 ab | 10.02 ± 0.35 ab | 16.31 ± 0.45 a | 1.92 ± 0.04 e | 4.91 ± 0.15 d | 9.70 ± 0.23 c |
Total phenolic content (g GAE/100 g DW) | 3.21 ± 0.02 d | 4.22 ± 0.04 c | 5.11 ± 0.03 b | 6.94 ± 0.04 a | 1.19 ± 0.02 e | 2.21 ± 0.03 c | 1.21 ± 0.01 e |
Total flavonoid content (g CE/100 g DW) | 1.26 ± 0.01 bc | 2.28 ± 0.01 b | 2.34 ± 0.02 ab | 3.44 ± 0.04 a | 0.92 ± 0.01 c | 1.06 ± 0.01 c | 0.85 ± 0.01 c |
DPPH, IC50 (μg/mL) | 7.13 ± 0.36 ab | 6.18 ± 0.28 b | 5.14 ± 0.42 bc | 3.21 ± 0.16 c | 10.42 ± 0.30 a | 8.58 ± 0.37 ab | 10.01 ± 0.25 a |
Inhibition of linoleic acid peroxidation (%) | 37.37 ± 1.70 bc | 44.52 ± 3.51 bc | 48.23 ± 2.33 b | 69.23 ± 1.62 a | 28.47 ± 1.81 c | 32.12 ± 2.54 c | 20.51 ± 1.42 d |
Reducing power for 10 mg/mL extract conc. | 1.25 ± 0.04 b | 1.41 ± 0.04 ab | 1.58 ± 0.03 a | 1.73 ± 0.05 a | 0.79 ± 0.03 c | 0.93 ± 0.06 cd | 0.55 ± 0.04 d |
Leaves | |||||||
Yield (%) | 9.81 ± 0.51 b | 10.12 ± 0.81 a | 8.84 ± 0.32 b | 11.42 ± 0.74 a | 1.50 ± 0.02 d | 4.72 ± 0.19 c | 8.63 ± 0.52 b |
Total phenolic content (g GAE/100 g DW) | 2.02 ± 0.05 ab | 2.81 ± 0.08 b | 2.40 ± 0.07 b | 3.83 ± 0.12 a | 1.01 ± 0.02 bc | 1.21 ± 0.05 bc | 0.89 ± 0.04 c |
Total flavonoid content (g CE/100 g DW) | 0.26 ± 0.01 ab | 0.34 ± 0.05 b | 0.38 ± 0.06 b | 0.61 ± 0.05 a | 0.10 ± 0.01 c | 0.22 ± 0.05 b | 0.18 ± 0.01 c |
DPPH, IC50 (μg/mL) | 8.16 ± 0.16 bc | 7.83 ± 0.25 c | 6.0 ± 0.31 c | 4.42 ± 0.03 d | 12.12 ± 1.3 ab | 10.03 ± 0.15 b | 16.46 ± 0.25 a |
Inhibition of linoleic acid peroxidation (%) | 32.71 ± 1.72 bc | 36.22 ± 1.21 b | 42.14 ± 1.52 ab | 50.65 ± 2.24 a | 21.44 ± 2.2 cd | 25.43 ± 1.20 c | 16.85 ± 2.0 d |
Reducing power for 10 mg/mL extract conc. | 1.18 ± 0.04 b | 1.36 ± 0.04 ab | 1.52 ± 0.03 ab | 1.64 ± 0.04 a | 0.62 ± 0.03 c | 0.79 ± 0.05 cd | 0.43 ± 0.02 d |
Seeds | |||||||
Yield (%) | 18.02 ± 2.1 ab | 19.70 ± 1.8 ab | 14.61 ± 0.41 b | 21.51 ± 1.6 a | 5.44 ± 0.35 c | 12.6 ± 0.50 ab | 14.40 ± 0.69 b |
Total phenolic content (g GAE/100 g DW) | 0.28 ± 0.01 d | 0.36 ± 0.08 c | 0.54 ± 0.03 b | 0.71 ± 0.05 a | 0.07 ± 0.003 e | 0.16 ± 0.01 de | 0.06 ± 0.02 e |
Total flavonoid content (g CE/100 g DW) | 0.08 ± 0.00 bc | 0.10 ± 0.01 b | 0.05 ± 0.01 c | 0.21 ± 0.03 a | 0.02 ± 0.00 d | 0.05 ± 0.01 c | 0.09 ± 0.01 bc |
DPPH, IC50 (μg/mL) | 26.09 ± 0.33 ab | 21.9 ± 0.37 c | 19.33 ± 0.05 c | 15.7 ± 0.08 d | 36.2 ± 0.41 a | 30.13 ± 0.3 b | 38.0 ± 1.15 a |
Inhibition of linoleic acid peroxidation (%) | 16.66 ± 1.56 bc | 18.44 ± 1.62 bc | 21.71 ± 3.12 b | 28.54 ± 2.31 a | 11.17 ± 0.71 d | 13.22 ± 0.73 c | 10.58 ± 0.6 d |
Reducing power for 10 mg/mL extract conc. | 0.27 ± 0.06 b | 0.29 ± 0.06 b | 0.33 ± 0.06 a | 0.35 ± 0.07 a | 0.12 ± 0.04 c | 0.15 ± 0.05 cd | 0.09 ± 0.03 d |
2.3. Total Flavonoids Content (TFC)
2.4. HPLC Analysis of Phenolic Acids
2.5. Percentage Inhibition of Linoleic Acid Peroxidation
Compounds | Bark | Leaves | Seeds |
---|---|---|---|
Protocatechuic acid | 2.43 ± 0.14 a | 0.91 ± 0.06 b | 0.46 ± 0.16 c |
Sinapic acid | 0.26 ± 0.01 | ND | ND |
Sorbic acid | 0.34 ± 0.03 b | 1.21 ± 0.02 a | 0.02 ± 0.00 c |
Ellagic acid | 1.50 ± 0.13 a | 0.10 ± 0.11 ab | 0.40 ± 0.16 b |
Ferulic acid | 2.17 ± 0.16 a | 2.12 ± 0.13 a | ND |
Syringic acid | 0.74 ± 0.05 a | 0.50 ± 0.06 b | 0.18 ± 0.02 c |
Vanillic acid | 0.56 ± 0.06 a | ND | 0.52 ± 0.06 a |
Gallic acid | 6.70 ± 0.31 a | 4.71 ± 0.24 b | 0.65 ± 0.06 c |
Chlorogenic acid | 0.78 ± 0.04 a | 0.70 ± 0.05 a | 0.15 ± 0.16 b |
Gentisic acid | 1.60 ± 0.04 a | 0.50 ± 0.16 b | ND |
Salicylic acid | 0.14 ± 0.02 b | 1.18 ± 0.01 a | ND |
Caffeic acid | 0.31 ± 0.06 a | 0.27 ± 0.02 a | 0.08 ± 0.01 b |
p-Coumaric acid | 0.26 ± 0.02 b | 1.19 ± 0.05 a | 0.04 ± 0.16 c |
m-Coumaric acid | 0.53 ± 0.08 | ND | ND |
Tannic acid | 1.02 ± 0.06 a | 0.13 ± 0.03 c | 0.57 ± 0.03 b |
4-Hydroxybenzoic acid | 2.15 ± 0.11 a | 0.29 ± 0.01 b | 0.11 ± 0.16 c |
4-Hydroxycinnamic acid | 1.87 ± 0.06 a | 0.36 ± 0.02 b | ND |
2.6. DPPH Radical Scavenging Activity
2.7. Reducing Power of Extracts
2.8. Antimicrobial Activity
3. Experimental
3.1. Sample Collection and Preparation of Extracts
3.2. Determination of Total Phenolic Content (TPC)
3.3. Determination of Total Flavonoid Content (TFC)
3.4. High Performance Liquid Chromatography (HPLC) Analysis
Tested organisms | Bark extracts | ||||||||
---|---|---|---|---|---|---|---|---|---|
Absoluteethanol | Aqueous ethanol | Absolutemethanol | Aqueous methanol | Absoluteacetone | Aqueous acetone | Deionizedwater | Amoxicillin | Flumequine | |
Diameter of inhibition zone (mm) | |||||||||
Pseudomonas stutzeri | 12.8 ± 0.8 bc | 16.3 ± 0.7 b | 15.6 ± 0.5 b | 21.5 ± 0.5 a | 11.6 ± 0.5 c | 12.3 ± 0.8 bc | 11.0 ± 0.3 c | 24.2± 1.2 a | ----- |
Pseudomonas aeruginosa | 10.3 ± 0.4 bc | 13.9 ± 0.4 b | 12.6 ± 0.4 bc | 19.3 ± 0.4 a | 9.2 ± 0.3 c | 9.8 ± 0.3 c | 10.0 ± 0.4 c | 21.3± 0.9 a | ----- |
Escherichia coli | 8.8 ± 0.4 c | 11.3 ± 0.3 b | 10.8 ± 0.4 b | 16.7 ± 0.5 a | 8.1 ± 0.3 c | 8.4 ± 0.3 c | 8.0 ± 0.3 c | 18.2± 1.0 a | ----- |
Aspergillus orazae | 13.1 ± 0.2 bc | 17.5 ± 0.2 b | 16.5 ± 0.7 b | 26.2 ± 0.8 a | 11.8 ± 0.4 bc | 12.1 ± 0.5 bc | 9.8 ± 0.3 c | ----- | 28.5 ± 1.2 a |
Aspergillus niger | 12.9 ± 0.8 bc | 14.1 ± 0.6 ab | 13.5 ± 0.5 b | 24.7 ± 0.8 ab | 10.9 ± 0.4 bc | 9.0 ± 0.3 c | 8.5 ± 0.2 c | ----- | 26.2 ± 1.2 a |
Fusarium solani | 12.0 ± 0.7 b | 13.1 ± 0.5 b | 11.7 ± 0.4 b | 22.9 ± 0.5 a | 9.2 ± 0.5 bc | 8.1 ± 0.3 c | 7.5 ± 0.2 c | ----- | 24.3 ± 1.2 a |
Minimum inhibitory concentration (mg/mL) | |||||||||
Pseudomonas stutzeri | 51 ± 2 b | 48 ± 2 b | 36 ± 2 bc | 26 ± 1 c | 62 ± 1 a | 58 ± 2 a | 60 ± 2 a | 23 ± 1 d | ----- |
Pseudomonas aeruginosa | 60 ± 3 c | 58 ± 3 c | 39 ± 1 cd | 29 ± 3 d | 80 ± 2 a | 71 ± 1 b | 76 ± 3 ab | 25 ± 1 d | ----- |
Escherichia coli | 66 ± 3 ab | 65 ± 1 ab | 41 ± 2 c | 36 ± 2 c | 86 ± 2 a | 78 ± 2 ab | 79 ± 2 b | 32 ± 2 d | ----- |
Aspergillus orazae | 48 ± 1 ab | 46 ± 2 ab | 42 ± 2 b | 22 ± 1 b | 24 ± 1 a | 52 ± 2 a | 54 ± 1 a | ----- | 20 ± 1 c |
Aspergillus niger | 51 ± 3 ab | 48 ± 3 ab | 46 ± 1 ab | 29 ± 2 b | 28 ± 2 a | 65 ± 3 a | 67 ± 2 a | ----- | 28 ± 1 c |
Fusarium solani | 58 ± 2 ab | 55 ± 2 ab | 53 ± 3 ab | 36 ± 3 b | 36 ± 2 a | 72 ± 3 a | 74 ± 3 a | ----- | 33 ± 2 c |
Tested organisms | Leaves extracts | ||||||||
---|---|---|---|---|---|---|---|---|---|
Absolute ethanol | Aqueous ethanol | Absolute methanol | Aqueous methanol | Absolute acetone | Aqueous acetone | Deionized water | Amoxicillin | Flumequine | |
Diameter of inhibition zone (mm) | |||||||||
Pseudomonas stutzeri | 10.6 ± 0.3 c | 12.1 ± 0.6 bc | 12.6 ± 0.4 bc | 16.2 ± 0.8 b | 10.0 ± 0.4 c | 11.0 ± 0.5 c | 9.20 ± 0.2 c | 24.2 ± 1.2 a | ----- |
Pseudomonas aeruginosa | 9.3 ± 0.2 bc | 10.6 ± 0.4 bc | 10.1 ± 0.3 bc | 14.5 ± 0.5 b | 8.20 ± 0.3 c | 9.30 ± 0.4 bc | 7.50 ± 0.2 c | 21.3 ± 0.9 a | ----- |
Escherichia coli | 8.0 ± 0.1 bc | 8.40 ± 0.3 bc | 8.20 ± 0.3 bc | 10.2 ± 0.4 b | 7.50 ± 0.2 bc | 8.50 ± 0.3 bc | 6.90 ± 0.3 c | 18.2 ± 1.0 a | ----- |
Aspergillus orazae | 12.6 ± 0.4 bc | 14.0 ± 0.8 b | 12.3 ± 0.7 bc | 15.7 ± 0.8 b | 10.9 ± 0.5 bc | 11.6 ± 0.5 bc | 9.50 ± 1.2 c | ----- | 28.5 ± 1.2 a |
Aspergillus niger | 11.0 ± 0.2 bc | 10.8 ± 0.5 bc | 10.6 ± 0.4 bc | 13.5 ± 0.7 b | 9.00 ± 0.4 bc | 8.60 ± 0.4 bc | 8.30 ± 0.3 c | ----- | 26.2 ± 1.2 a |
Fusarium solani | 9.4 ± 0.1 bc | 10.0 ± 0.4 bc | 7.00 ± 0.2 c | 11.6 ± 0.4 b | 8.00 ± 0.3 bc | 7.80 ± 0.2 bc | 7.30 ± 0.2 c | ----- | 24.3 ± 1.1 a |
Minimum inhibitory concentration (mg/mL) | |||||||||
Pseudomonas stutzeri | 92 ± 1 a | 89 ± 2 b | 86 ± 3 b | 80 ± 1 b | 106 ± 1 a | 98 ± 1 a | 109 ± 1 a | 23 ± 1 c | ----- |
Pseudomonas aeruginosa | 96 ± 2 a | 92 ± 3 b | 96 ± 2 b | 88 ± 3 b | 110 ± 1 a | 108 ± 1 a | 119 ± 2 a | 25 ± 1 c | ----- |
Escherichia coli | 127 ± 2 a | 122 ± 1 b | 121 ± 1 b | 90 ± 2 b | 127 ± 3 a | 113 ± 2 a | 129 ± 1 a | 32 ± 2 c | ----- |
Aspergillus orazae | 90 ± 2 ab | 85 ± 2 ab | 81 ± 2 ab | 72 ± 3 b | 110 ± 1 a | 108 ± 1 a | 109 ± 3 a | ----- | 20 ± 1 c |
Aspergillus niger | 95 ± 2 ab | 90 ± 2 ab | 90 ± 2 ab | 81 ± 2 b | 112 ± 2 a | 110 ± 1 a | 108 ± 1 a | ----- | 28 ± 1 c |
Fusarium solani | 112 ± 2 ab | 109 ± 2 ab | 106 ± 1 ab | 90 ± 2 b | 119 ± 1 a | 116 ± 1 a | 117 ± 2 a | ----- | 33 ± 2 c |
Tested organisms | Seeds extracts | ||||||||
---|---|---|---|---|---|---|---|---|---|
Absolute Ethanol | Aqueous ethanol | Absolute methanol | Aqueous methanol | Absolute acetone | Aqueous acetone | Deionized water | Amoxicillin | Flumequine | |
Diameter of inhibition zone (mm) | |||||||||
Pseudomonas stutzeri | 9.3 ± 0.3 bc | 10.3 ± 0.4 bc | 9.0 ± 0.41 bc | 11.3 ± 0.3 b | 7.5 ± 0.3 bc | 7.8 ± 0.3 bc | 7.0 ± 0.2 c | 24.2 ± 1.2 a | ----- |
Pseudomonas aeruginosa | 9.0 ± 0.2 bc | 9.8 ± 0.3 bc | 8.0 ± 0.3 bc | 10.0 ± 0.2 b | 7.0 ± 0.3 bc | 7.2 ± 0.3 bc | 6.5 ± 0.2 c | 21.3 ± 0.9 a | ----- |
Escherichia coli | 8.4 ± 0.2 bc | 9.0 ± 0.3 b | 7.9 ± 0.4 bc | 8.8 ± 0.3 b | 6.5 ± 0.3 bc | 7.0 ± 0.2 bc | 6.2 ± 0.1 c | 18.2 ± 1.0 a | ----- |
Aspergillus orazae | 10.6 ± 0.3 b | 11.1 ± 0.4 b | 10.1 ± 0.4 ab | 11.5 ± 0.3 b | 9.0 ± 0.4 b | 9.5 ± 0.3 bc | 8.2 ± 0.3 c | ----- | 28.5 ± 1.2 a |
Aspergillus niger | 10.2 ± 0.4 b | 10.8 ± 0.4 b | 10.0 ± 0.5 b | 11.2 ± 0.3 b | 7.9 ± 0.4 c | 7.5 ± 0.3 c | 7.1 ± 0.2 c | ----- | 26.2 ± 1.2 a |
Fusarium solani | 9.5 ± 0.5 bc | 9.9 ± 0.3 b | 9.1 ± 0.5 bc | 10.1 ± 0.4 b | 6.8 ± 0.3 c | 7.2 ± 0.2 cc | 6.4 ± 0.1 c | ----- | 24.3 ± 1.1 a |
Minimum inhibitory concentration (mg/mL) | |||||||||
Pseudomonas stutzeri | 109 ± 20 ab | 105 ± 4 b | 112 ± 2 ab | 106 ± 2 b | 135 ± 2 a | 119 ± 2 ab | 125 ± 2 ab | 23 ± 1 c | ----- |
Pseudomonas aeruginosa | 104 ± 3 c | 102 ± 4 a | 120 ± 4 b | 109 ± 4 c | 140 ± 3 a | 122 ± 4 b | 130 ± 2 ab | 25 ± 1 c | ----- |
Escherichia coli | 118 ± 2 ab | 101 ± 3 b | 126 ± 2 ab | 112 ± 3 ab | 146 ± 2 a | 127 ± 4 ab | 141 ± 4 a | 32 ± 2 c | ----- |
Aspergillus orazae | 95 ± 3 b | 96 ± 3 b | 101 ± 4 ab | 93 ± 2 b | 112 ± 4 a | 108 ± 2 ab | 114 ± 2 a | ----- | 20 ± 1 c |
Aspergillus niger | 97 ± 2 b | 98 ± 4 b | 105 ± 2 a | 98 ± 1 b | 117 ± 3 a | 110 ± 3 ab | 117 ± 2 a | ----- | 28 ± 1 c |
Fusarium solani | 99 ± 3 b | 102 ± 3 b | 107 ± 3 a | 101 ± 2 b | 118 ± 2 ab | 113 ± 2 ab | 132 ± 2 a | ----- | 33 ± 2 c |
3.5. Antioxidant Activity Determination in Linoleic Acid System
3.6. Determination of Reducing Power
3.7. DPPH Radical Scavenging Assay
3.8. Antimicrobial Activity
3.9. Disc Diffusion Method
3.10. Determination of Minimum Inhibitory Concentration
3.11. Statistical Analysis
4. Conclusions
Acknowledgments
References and Notes
- Liu, Q.; Yao, H. Antioxidant activities of barley seeds extracts. Food Chem. 2007, 102, 732–737. [Google Scholar]
- Iqbal, S.; Bhanger, M.I.; Anwar, F. Antioxidant properties and components of bran extracts from selected wheat varieties commercially available in Pakistan. LWT-Food Sci. Technol. 2007, 40, 361–367. [Google Scholar] [CrossRef]
- Chopra, R.N.; Nayer, S.L.; Chopra, I.C. Glossary of Indian Medicinal Plants, 3rd ed; Council of Scientific and Industrial Research: New Delhi, India, 1992; pp. 7–246. [Google Scholar]
- Bruneton, J. Pharmacognosy, Phytochemistry, Medicinal Plants; Lavoisiler Publishing Co.: Paris, France, 1995; pp. 265–380. [Google Scholar]
- Pathak, V.P.; Saini, T.R.; Khanna, R.N. Isopongachromene, a chromenoflavone from Pongamia glabra seeds. Phytochemistry 1983, 22, 308–309. [Google Scholar]
- Parekh, J.; Nair, R.; Chanda, S. Preliminary screening of some folkloric plants from Western India for potential antimicrobial activity. Indian J. Pharmacol. 2005, 37, 408–409. [Google Scholar] [CrossRef]
- Parmar, B.S.; Sahravat, K.L.; Mukarjee, S.K. Pongamia glabra: Constituents and uses. J. Sci. Ind. Res. 1976, 35, 608–611. [Google Scholar]
- Punitha, R.; Manoharan, S. Antihyperglycemic and antilipidperoxidative effects of Pongamia pinnata (Linn.) Pierre flowers in alloxan induced diabetic rats. J. Ethnopharmacol. 2006, 105, 39–46. [Google Scholar] [CrossRef]
- Ballal, M. Screening of medicinal plants used in rural folk medicine for treatment of diarrhea. Available online: http://www.pharmoinfo.net (accessed on 12 December 2011).
- Tanaka, T.; Linuma, M.; Yuki, K.; Fujy, Y.; Mizuno, M. Flavonoids in root bark of Pongamia pinnata. Phytochemistry 1992, 31, 993–998. [Google Scholar]
- Carcache, B.E.J.; Kang, Y.H.; Park, E.J.; Su, B.N.; Kardono, L.B.S.; Riswan, S.; Fong, H.H.S.; Pezzuto, J.M.; Kinghorn, A.D. Constituents of the stem bark of Pongamia pinnata with the potential to induce quinine reductase. J. Nat. Prod. 2003, 66, 1197–1202. [Google Scholar]
- Rastogi, R.P.; Malhotra, B.N. Compendium an Medicinal Plants; Central drug Research Institute Lucknow and National Institute of Science Communication: New Delhi, India, 2001; pp. 522–523. [Google Scholar]
- Chauhan, D.; Chauhan, J.S. Flavonoid glycosides from Pongamia pinnata. Pharm. Biol. 2002, 40, 171–174. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Shi, C.; Deng, Z.; Fu, H.; Proksh, P.; Lin, W. Pongamones A–E, five flavonoids from the stems of a mangrove plant Pongamia pinnata. Phytochemistry 2006, 67, 1347–1352. [Google Scholar]
- Tanaka, T.; Linuma, M.; Yuki, K.; Fujy, Y.; Mizuno, M. Two new β-hydroxychalcones from the root bark of Pongamia pinnata. Chem. Pharm. Bull. 1991, 39, 1473–1475. [Google Scholar]
- Kitagawa, I.; Zang, R.; Hori, K.; Tsuchiya, K.; Shibuya, H. Indonesian medicinal plants. II. Chemical structures of pongapinones A and B, two new phenylpropanoids from the bark of Pongamia pinnata (Papilionaceae). Chem. Pharm. Bull. 1992, 40, 2041–2043. [Google Scholar] [CrossRef]
- Yadav, P.P.; Ahmed, G.; Mourya, R. Furanoflavonoids from Pongamia pinnata fruits. Phytochemistry 2004, 65, 439–443. [Google Scholar]
- Shabir, G.; Anwar, F.; Sultana, B.; Khalid, Z.M.; Afzal, M.; Khan, Q.M.; Ashrafuzzaman, M. Antioxidant and antimicrobial attributes and phenolics of different solvent extracts from leaves, flowers and bark of Gold Mohar (Delonix regia). Molecules 2011, 16, 7302–7319. [Google Scholar] [CrossRef]
- Ahmad, N.; Anwar, F.; Hameed, S.; Boyce, M.C. Antioxidant and antimicrobial attributes of different solvent extracts from leaves and flowers of akk[calotropis procera (Ait.) Ait.F.)]. J. Med. Plants Res. 2011, 5, 4879–4887. [Google Scholar]
- Siddhuraju, P.; Becker, K. Antioxidant properties of various extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef]
- Sagwan, S.; Rao, D.V.; Sharma, R.A. In-vitro and In-vivo antioxidant activity and total phenolic content of Pongamia pinnata (L.) Pierre: An important medicinal plant. Int. J. Biotechnol. 2011, 4, 568–574. [Google Scholar]
- Babu, D.R.; Rao, G.N. In vitro studies on extracts of Pongamia pinnata (L) Pierre flowers as a potent antioxidant. Int. J. Agric. Food Sci. Technol. 2010, 1, 7–11. [Google Scholar]
- Gupta, V.; Sharma, M. Screening of three Indian medicinal plant extracts for antioxidant activity. Int. J. Inst. Pharm. Life Sci. 2011, 1, 118–137. [Google Scholar]
- Jaffery, E.H.; Brown, A.F.; Kurilich, A.C.; Keek, A.S.; Matusheski, N.; Klein, B.P. Variation in content of bioactive components in broccoli. J. Food Compos. Anal. 2003, 16, 323–330. [Google Scholar]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar]
- Rawat, S.; Jugran, A.; Giri, L.; Bhatt, I.D.; Rawal, R.S. Assessment of antioxidant properties in fruits of Myrica esculenta: A popular wild edible species in Indian Himalayan region. Evid. Based Complement. Alternat. Med. 2011. [Google Scholar]
- Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar]
- Merkl, R.; Hrádková, I.; Filip, V.; Šmidrkal, J. Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech J. Food Sci. 2010, 28, 275–279. [Google Scholar]
- Tomas-Barberan, F.; Clifford, M.N. Dietary hydroxybenzoic acid derivatives—Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1024–1032. [Google Scholar]
- Ferguson, L.R.; Shuo-Tun, Z.; Harris, P.J. Antioxidant and antigenotoxic effects of plant cell wall hydroxycinnamic acids in cultured HT-29. Mol. Nutr. Food Res. 2005, 49, 585–693. [Google Scholar]
- Yen, G.C.; Duh, P.D.; Chuang, D.Y. Antioxidant activity of anthraquinones and anthrone. Food Chem. 2000, 70, 437–441. [Google Scholar]
- Qureshi, M.N.; Kuchekar, B.S.; Logade, N.A.; Haleem, M.A. In-vitro antioxidant and in-vivo epatoprotective activity of Leucas ciliata leaves. Rec. Nat. Prod. 2010, 4, 124–130. [Google Scholar]
- Demiray, S.; Pintado, M.E.; Castro, P.M.L. Evaluation of phenolic profiles and antioxidant activities of Turkish medicinal plants: Tiliaargentea, Crataegi folium leaves and Polygonum bistorta roots. World Acad. Sci. Eng. Technol. 2009, 54, 312–317. [Google Scholar]
- Zou, Y.; Lu, Y.; Wei, D. Antioxidant activity of a flavonoid rich extract of Hypericum perforatum L. in vitro. J. Agric. Food Chem. 2004, 52, 5032–5039. [Google Scholar]
- Thiem, B.; Grosslinka, O. Antimicrobial activity of Rubus chamaemorus leaves. Fitoterapia 2000, 375, 93–95. [Google Scholar]
- Tim, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar]
- Celiktasa, Y.O.; Nartop, P.; Gurel, A.; Bedir, E.; Vardar-Sukan, F. Determination of phenolic content and antioxidant activity of extracts obtained from Rosmarinus officinalis’ calli. J. Plant Physiol. 2007, 164, 1536–1542. [Google Scholar] [CrossRef]
- Chandrashekar, K.S.; Prasanna, K.S. Antimicrobial activity of Pongamia pinnata leaves. Int. J. Med. Res. 2010, 1, 18–20. [Google Scholar]
- Chaovanalikit, A.; Wrolstad, R.E. Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. J. Food Sci. 2004, 69, 67–72. [Google Scholar]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar]
- Chapuis-Lardy, L.; Contour-Ansel, D.; Bernhard-Reversat, F. High-performance liquid chromatography of water-soluble phenolics in leaf litter of three Eucalyptus hybrids (Congo). Plant Sci. 2002, 163, 217–222. [Google Scholar] [CrossRef]
- Osawa, T.; Namiki, M. A novel type of antioxidant isolated from leaf wax of eucalyptus leaves. Agric. Biol. Chem. 1981, 45, 735–739. [Google Scholar]
- Ayoola, G.A.; Sofidiya, T.; Odukoya, O.; Coker, H.A.B. Phytochemical screening and free radical scavenging activity of some Nigerian medicinal plants. J. Pharm. Sci. Pharm. Pract. 2006, 8, 133–136. [Google Scholar]
- NCCLS (National Committee for Clinical Laboratory Standards), Performance Standards for Antimicrobial Disc Susceptibility Test, 6th, 1997; Approved Standard, M2-A6; Wayne, PA, USA.
- NCCLS (National Committee for Clinical Laboratory Standards), Performance Standards for Antimicrobial Susceptibility Test, 9th, 1999; International Supplement, M100-S9; Wayne, PA, USA.
- Sample Availability: Samples of the plant material are available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sajid, Z.I.; Anwar, F.; Shabir, G.; Rasul, G.; Alkharfy, K.M.; Gilani, A.-H. Antioxidant, Antimicrobial Properties and Phenolics of Different Solvent Extracts from Bark, Leaves and Seeds of Pongamia pinnata (L.) Pierre. Molecules 2012, 17, 3917-3932. https://doi.org/10.3390/molecules17043917
Sajid ZI, Anwar F, Shabir G, Rasul G, Alkharfy KM, Gilani A-H. Antioxidant, Antimicrobial Properties and Phenolics of Different Solvent Extracts from Bark, Leaves and Seeds of Pongamia pinnata (L.) Pierre. Molecules. 2012; 17(4):3917-3932. https://doi.org/10.3390/molecules17043917
Chicago/Turabian StyleSajid, Zahid Iqbal, Farooq Anwar, Ghulam Shabir, Ghulam Rasul, Khalid M. Alkharfy, and Anwarul-Hassan Gilani. 2012. "Antioxidant, Antimicrobial Properties and Phenolics of Different Solvent Extracts from Bark, Leaves and Seeds of Pongamia pinnata (L.) Pierre" Molecules 17, no. 4: 3917-3932. https://doi.org/10.3390/molecules17043917
APA StyleSajid, Z. I., Anwar, F., Shabir, G., Rasul, G., Alkharfy, K. M., & Gilani, A.-H. (2012). Antioxidant, Antimicrobial Properties and Phenolics of Different Solvent Extracts from Bark, Leaves and Seeds of Pongamia pinnata (L.) Pierre. Molecules, 17(4), 3917-3932. https://doi.org/10.3390/molecules17043917