4-N,N-Dimethylaminopyridine Promoted Selective Oxidation of Methyl Aromatics with Molecular Oxygen
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Oxidation of p-xylene with Molecular Oxygen Using DMAP/Benzyl Bromide
Entry | Catalyst | Conversion(%) | Product selectivity (%) | ||||
---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | Others | |||
1 | None | <2 | - | - | - | - | - |
2 | DMAP | <2 | - | - | - | - | - |
3 | benzyl bromide | 6 | 50 | 50 | n.d. [b] | n.d. | n.d. |
4 | DMAP/benzyl bromide [c] | 49 | 7 | 13 | 58 | 19 | 3 |
2.2. Influence of DMAP/Benzyl Bromide Molar Ratio
2.2. Influence of Different Pyridine Analogues
2.3. Optimization of Reaction Conditions
Entry | Solvent | Temperature (°C) | Conversion(%) | Product selectivity (%) | |||
---|---|---|---|---|---|---|---|
3 | 4 | 5 | Others [b] | ||||
1 | H2O | 160 | <2 | - | - | - | - |
2 | Acetic acid | 160 | 66 | 17 | 60 | 1 | 22 [c] |
3 | Acetonitrile | 160 | 87 | 7 | 82 | 2 | 9 |
4 | Acetonitrile | 140 | 28 | 31 | 67 | - | 2 |
5 | Acetonitrile | 120 | <2 | - | - | - | - |
2.4. Oxidation of Different Methyl Aromatics
Entry | Substrate | Conversion(%) | Product selectivity (%) [b] | ||||
---|---|---|---|---|---|---|---|
Alcohol | Aldehyde | Acid | Ester | Others | |||
1 | 56 | 5 | 8 | 75 | 10 | 2 | |
2 | 41 | 3 | 4 | 82 | 10 | 1 | |
3 | 49 | 3 | 6 | 89 | 1 | 1 | |
4 | 39 | 2 | 7 | 86 | 4 | 1 | |
5 [c] | 17 | 10 | 16 | 58 | 14 | 2 | |
6 [c] | 14 | 6 | 18 | 56 | 17 | 3 | |
7 [c] | 12 | 7 | 17 | 63 | 11 | 2 | |
8 [c] | <2 | - | - | - | - | - |
2.5. Interaction of DMAP and Benzyl Bromide
Entry | Catalysts | Conversion(%) | Product selectivity (%) | ||||
---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | Others | |||
1 | benzyl chloride + DMAP | 2 | 16 | 84 | n.d. [b] | n.d. | n.d. |
2 | bromine + DMAP | 6 | 27 | 43 | n.d. | n.d. | 30[c] |
3 | ammonium bromide + DMAP | 20 | 20 | 19 | 39 | 19 | 3 |
4 | n-butyl bromide + DMAP | 45 | 5 | 8 | 65 | 20 | 2 |
5 | n-dodecyl bromide + DMAP | 44 | 9 | 11 | 58 | 21 | 1 |
6 | 1-benzyl-4-N,N-dimethyl pyridinium bromide [d] | 51 | 6 | 15 | 59 | 17 | 3 |
2.6. Tentative Reaction Mechanism
3. Experimental
3.1. General
4. Conclusions
Acknowledgments
References and Notes
- Sheldon, R.A.; Arends, I.W.C.E. Organocatalytic oxidations mediated by nitroxyl radicals. Adv. Synth. Catal. 2004, 346, 1051–1071. [Google Scholar]
- Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem. Rev. 2005, 105, 2329–2363. [Google Scholar]
- Suresh, A.K.; Sharma, M.M.; Sridhar, T. Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons. Ind. Eng. Chem. Res. 2000, 39, 3958–3997. [Google Scholar]
- Piera, J.; Backvall, J.E. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer-a biomimetic approach. Angew.Chem. Int. Ed. Engl. 2008, 47, 3506–3523. [Google Scholar]
- Matienko, L.I.; Mosolova, L.A.; Zaikov, G.E. Selective catalytic oxidation of hydrocarbons. New prospects. Russ. Chem. Rev. 2009, 78, 211–230. [Google Scholar] [CrossRef]
- Kesavan, L.; Tiruvalam, R.; Ab Rahim, M.H.; bin Saiman, M.I.; Enache, D.I.; Jenkins, R.L.; Dimitratos, N.; Lopez-Sanchez, J.A.; Taylor, S.H.; Knight, D.W.; et al. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 2011, 331, 195–199. [Google Scholar]
- Besson, M.; Gallezot, P. Deactivation of metal catalysts in liquid phase organic reactions. Catal.Today 2003, 81, 547–559. [Google Scholar]
- Partenheimer, W. Methodology and scope of metal bromide autoxidation of hydrocarbons. Catal.Today 1995, 23, 69–158. [Google Scholar]
- Jarup, L. Hazards of heavy metal contamination. Brit. Med. Bull. 2003, 68, 167–182. [Google Scholar]
- Fokin, A.A.; Schreiner, P.R. Metal-free, selective alkanefunctionalizations. Adv. Synth. Catal. 2003, 345, 1035–1052. [Google Scholar]
- Ohkubo, K.; Mizushima, K.; Iwata, R.; Souma, K.; Suzuki, N.; Fukuzumi, S. Simultaneous production of p-tolualdehyde and hydrogen peroxide in photocatalytic oxygenation of p-xylene and reduction of oxygen with 9-mesityl-10-methylacridinium ion derivatives. Chem. Commun. 2010, 46, 601–603. [Google Scholar]
- Ohkubo, K.; Fukuzumi, S. 100% selective oxygenation of p-xylene to p-tolualdehyde via photoinduced electron transfer. Org. Lett. 2000, 2, 3647–3650. [Google Scholar] [CrossRef]
- Tada, N.; Hattori, K.; Nobuta, T.; Miura, T.; Itoh, A. Facile aerobic photooxidation of methyl group in the aromatic nucleus in the presence of an organocatalyst under vis irradiation. Green Chem. 2011, 13, 1669–1671. [Google Scholar]
- Yang, G.Y.; Ma, Y.F.; Xu, J. Biomimetic catalytic system driven by electron transfer for selective oxygenation of hydrocarbon. J. Am. Chem. Soc. 2004, 126, 10542–10543. [Google Scholar]
- Yang, X.M.; Wang, Y.; Zhou, L.P.; Chen, C.; Zhang, W.; Xu, J. Efficient aerobic oxidation of hydrocarbons with O2 catalyzed by DDQ/NHPI. J. Chem. Technol. Biotechnol. 2010, 85, 564–568. [Google Scholar]
- Zhang, Q.H.; Chen, C.; Ma, H.; Miao, H.; Zhang, W.; Sun, Z.Q.; Xu, J. Efficient metal-free aerobic oxidation of aromatic hydrocarbons utilizing aryl-tetra halogenated n-hydroxyphthalimides and 1,4-diamino-2,3-dichloroanthraquinone. J. Chem. Technol. Biotechnol. 2008, 83, 1364–1369. [Google Scholar] [CrossRef]
- Einhorn, C.; Einhorn, J.; Marcadal, C.; Pierre, J.L. Oxidation of organic substrates by molecular oxygen mediated by n-hydroxyphthalimide (NHPI) and acetaldehyde. Chem. Commun. 1997, 447–448. [Google Scholar]
- Matsunaka, K.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. A remarkable effect of quaternary ammonium bromide for the n-hydroxyphthalimide-catalyzed aerobic oxidation of hydrocarbons. Tetrahedron Lett. 1999, 40, 2165–2168. [Google Scholar]
- Melone, L.; Gambarotti, C.; Prosperini, S.; Pastori, N.; Recupero, F.; Punta, C. Hydroperoxidation of tertiary alkylaromatics catalyzed by n-hydroxyphthalimide and aldehydes under mild conditions. Adv. Synth. Catal. 2011, 353, 147–154. [Google Scholar] [CrossRef]
- Raghavendrachar, P.; Ramachandran, S. Liquid-phase catalytic-oxidation of para-xylene. Ind. Eng. Chem. Res. 1992, 31, 453–462. [Google Scholar]
- Hirashima, S.; Nobuta, T.; Tada, N.; Miura, T.; Itoh, A. Direct aerobic photo-oxidative synthesis of aromatic methyl esters from methyl aromatics via dimethyl acetals. Org. Lett. 2010, 12, 3645–3647. [Google Scholar]
- Sugai, T.; Itoh, A. Aerobic photo-oxidation in the presence of catalytic allylbromide. Tetrahedron Lett. 2007, 48, 2931–2934. [Google Scholar]
- Tong, X.L.; Xu, J.; Miao, H. Highly efficient and metal-free aerobic hydrocarbons oxidation process by an o-phenanthroline-mediated organocatalytic system. Adv. Synth. Catal. 2005, 347, 1953–1957. [Google Scholar] [CrossRef]
- Tong, X.L.; Xu, J.; Miao, H.; Gao, J. New efficient organocatalytic oxidation of BenzylicCompounds by Molecular Oxygen under Mild Conditions. Tetrahedron Lett. 2006, 47, 1763–1766. [Google Scholar]
- Tong, X.L.; Xu, J.; Miao, H.; Gao, J.; Sun, Z.Q.; Zhang, W. Highly efficient and organic nitrogen-containing cation-promoted aerobic oxidation of alkylaromatics in the presence of N-hydroxyphthalimide. J. Chem. Technol. Biotechnol. 2009, 84, 1762–1766. [Google Scholar] [CrossRef]
- Dugmore, G.M.; Powels, G.J.; Zeelie, B. Mechanistic aspects of benzylic bromide formation and oxidation during the cobalt acetate bromide catalyzed oxidation of alkylbenzenes in carboxylic-acids. J. Mol. Catal. A Chem. 1995, 99, 1–12. [Google Scholar]
- Metelski, P.D.; Adamian, V.A.; Espenson, J.H. Mechanistic role of benzylic bromides in the catalytic autoxidation of methylarenes. Inorg.Chem. 2000, 39, 2434–2439. [Google Scholar]
- Prades, A.; Corberan, R.; Poyatos, M.; Peris, E. A simple catalyst for the efficient benzylation of arenes by using alcohols, ethers, styrenes, aldehydes, or ketones. Chem.-Eur. J. 2009, 15, 4610–4613. [Google Scholar]
- Kaneko, M.; Hayashi, R.; Cook, G.R. Intermolecular friedel-crafts reaction catalyzed by InCl3. Tetrahedron Lett. 2007, 48, 7085–7087. [Google Scholar]
- Partenheimer, W. Chemistry of the oxidation of acetic acid during the homogeneous metal-catalyzed aerobic oxidation of alkylaromatic compounds. Appl. Catal.A Gen. 2011, 409, 48–54. [Google Scholar]
- Csanyi, L.J.; Jaky, K. Characteristics of cationic phase-transfer catalysts in the oxidation of hydrocarbons by O2. Phys. Chem. Chem. Phys. 2001, 3, 2018–2024. [Google Scholar]
- Csanyi, L.J.; Jaky, K.; Palinko, I.; Rockenbauer, A.; Korecz, L. The role of onium salts in the oxidation of hydrocarbons by O2 catalysed by cationic phase-transfer reagents. Phys. Chem. Chem. Phys. 2000, 2, 3801–3805. [Google Scholar]
- Plooster, M.N.; Garvin, D. The hydrogen-bromine reaction at elevated temperatures. J. Am. Chem. Soc. 1956, 78, 6003–6008. [Google Scholar]
- Sample Availability: Samples of the all reagents used in the study and the 1-benzyl-4-N,N-dimethylpyridinium bromide are available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, Z.; Gao, J.; Wang, F.; Xu, J. 4-N,N-Dimethylaminopyridine Promoted Selective Oxidation of Methyl Aromatics with Molecular Oxygen. Molecules 2012, 17, 3957-3968. https://doi.org/10.3390/molecules17043957
Zhang Z, Gao J, Wang F, Xu J. 4-N,N-Dimethylaminopyridine Promoted Selective Oxidation of Methyl Aromatics with Molecular Oxygen. Molecules. 2012; 17(4):3957-3968. https://doi.org/10.3390/molecules17043957
Chicago/Turabian StyleZhang, Zhan, Jin Gao, Feng Wang, and Jie Xu. 2012. "4-N,N-Dimethylaminopyridine Promoted Selective Oxidation of Methyl Aromatics with Molecular Oxygen" Molecules 17, no. 4: 3957-3968. https://doi.org/10.3390/molecules17043957
APA StyleZhang, Z., Gao, J., Wang, F., & Xu, J. (2012). 4-N,N-Dimethylaminopyridine Promoted Selective Oxidation of Methyl Aromatics with Molecular Oxygen. Molecules, 17(4), 3957-3968. https://doi.org/10.3390/molecules17043957