Essential Oils in Combination and Their Antimicrobial Properties
Abstract
:1. Introduction
2. Interaction between Components of Essential Oils
Pair combinations | Organism | Methods | Interaction | References |
---|---|---|---|---|
Thymol/carvacrol | Staphylococcus Aureus, Pseudomonas. Aeruginosa | Half dilution | Additive | Lambert et al. [23] |
Escherichia Coli | Checkerboard | Synergism | Pei et al. [54] | |
S. aureus, Bacillus. cereus, E coli | Checkerboard | Antagonism | Gallucci et al. [55] | |
S. aureus, P. aeruginosa | Mixture | Additive | Lambert et al. [23] | |
E. coli | Checkerboard | Additive | Rivas et al. [56] | |
Salmonella typhinurium | Mixture | Synergism | Zhou et al. [57] | |
Thymol/eugenol | E. coli | Checkerboard | Synergism | Pei et al. [54] |
Carvacrol/eugenol | E. coli | Checkerboard | Synergism | Pei et al. [54] |
S. aureus,B. cereus, E coli | Checkerboard | Antagonism | Gallucci et al. [55] | |
Carvacrol/myrcene | S. aureus, B. cereus, E coli | Checkerboard | Antagonism | Gallucci et al. [55] |
Carvacrol/Cymene | B. cereus | Mixture | Synergism | Ultee et al. [58] |
Carvacrol/linaloolEugenol/linaloolEugenol/menthol | Listeria monocytogenes, Enterobacter aerogenes,E. coli,P. aeruginosa | Checkerboard | Synergism | Bassole et al. [30] |
Menthol/GeraniolMenthol/Thymol | S. aureus, B. cereus | Synergism | Gallucci et al. [55] | |
Cinnamaldehyde/Carvacrol | E. coli | Checkerboard | Additive | Pei et al. [54] |
S. typhinurium | Mixture | Synergism | Zhou et al. [57] | |
Cinnamaldehyde/Thymol | E. coli | Checkerboard | Synergism | Pei et al. [54] |
S. typhinurium | Mixture | Synergism | Zhou et al. [57] | |
Cinnamaldehyde/Eugenol | Staphylococcus sp.,Micrococcus sp., Bacillussp.,and Enterobacter sp. | Mixture | Additive | Moleyar et Narasimham [59] |
1,8-Cineole/Aromadendrene | methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) Enterococcus faecalis | Checkerboard | Additive | Mulyaningsih et al. [60] |
Limonene/1,8-cineole | S. aureus, P. aeruginosa | Mixture | Synergism | van Vuuren and Viljoen [61] |
α-pinene/Limonene | Saccharomyces cerevisiae | Checkerboard | synergism, additive | Tserennadmid et al. [62] |
α-pinene/Linalool | ||||
Linalool/Terpinen-4-ol | ||||
O. vulgare/Rosmarinus officinalis | L. monocytogenes, Yersinia enterocolitica, Aeromonas hydrophilla, P. fluorescens | Mixture | synergism | de Azeredo et al. [63] |
O. vulgare/T. vulgaris | P. fluorescens | Mixture | Additive | |
Lippia multiflora/Mentha piperita | E. coli, E. aerogenes, Enterococcus faecalis,L. monocytogenes, P. aeruginosa, Salmonella enterica, S. typhimurium, Shigella. dysenteriae, S. Aureus | Checkerboard | Synergism, additive | Bassole et al. [30] |
L. multiflora/O. basilicum | ||||
M. piperita/O. basilicum | E. coli, E. aerogenes, E. faecalis, L. monocytogenes, P. aeruginosa, S. enterica,S. typhimurium, S. dysenteriae, S. aureus | |||
S. aromaticum/R. officinalis | Staphylococcus. epidermidis, S aureus, B. subtilis, E. coli, Proteus vulgaris, P. aeruginosa | Mixture | Additive | Fu et al. [42] |
Candida albicans | Synergism | |||
Aspergillus niger | Antagonism | |||
C. zeylanicum/S. aromaticum | E. coli | Mixture | Antagonism | Goni et al. [64] |
Y. enterocolitica, L. monocytogenes, B. Cereus | Mixture | Synergism | ||
O. vulgare/O. basilicum | B. Cereus, E. Coli,P. Aeruginosa | Checkerboard | Additive | Gutierrez et al. [20] |
O. vulgare/Melissa officinalis | B. cereus | |||
O. vulgare/O. majorana | B. cereus,E. coli | |||
O. vulgare/R. officinalis | B. cereus | |||
O. vulgare/T. vulgaris | Enterobacter cloacae,P. fluorescens,Listeria Innocua | Checkerboard | Additive | Gutierrez et al. [65] |
O. vulgare/Salvia triloba | B. cereus | |||
O. vulgare/T. vulgaris | B. cereus,P. aeruginosa | |||
O. vulgare/T. vulgaris | Enterobacter cloacae,P. fluorescens,Listeria Innocua | Checkerboard | Additive | Gutierrez et al. [65] |
T. vulgaris/O. majorana | E. cloacae | |||
T. vulgaris/M. officinalis | L. innocua | |||
Cymbopogon citratus/C. giganteus | E. coli, E. aerogenes, L. monocytogenes, S. typhimurium, S. dysenteriae, S. aureus | Checkerboard | Synergism, additive | Bassole et al. [66] |
3. Interaction Test Methods
FIC index | References | |||
---|---|---|---|---|
Synergy | Addition | Indifference | Antagonism | |
<1 | 1 | 1–2 | >2 | Pei et al. [54] |
<0.5 | 0.5–1 | 1–4 | >4 | Schelz et al. [75], Gutierrez et al. [20,65], Bassole et al. [30,66]; Tserennadmid et al. [62] |
≤0.5 | 0.5–1 | 1–4 | >4 | Mulyaningsih et al. [60] |
<0.5 | 0.5–4 | - | >4 | Zore et al. [76]; Goni et al. [64] |
≤0.5 | 0.5–1 | - | >1 | Rosato et al. [77] |
≤0.75 | 0.75-2 | – | >2 | Galluci et al. [55] |
<0.9 | 0.5–1,1 | - | 1.1 | Romano et al. [78] |
- (1) The decrease in populations (DP > 90%): linked with the definition of DP, it was concluded that only when DP < 0.1 (log DP < −1) that the combinations of various reagents had significant antibacterial activity.
- (2) When there was significant difference (ANOVA) between the antibacterial activity of the combination and the individual components, respectively, it meant that the combination was effective.
- (3) Synergy was defined as a 2-log decrease of Colony Forming Units (CFU) in the drug combination group compared with the most effective single agent at the end of 24 h [79].
Pair synergistic combinations | Organisms | Ratio of combined compounds | Reduction of effective concentration (%) | References |
---|---|---|---|---|
Cinnamaldehyde/ Thymol | E. coli | 1:1 | 25 | Pei et al. [54] |
Cinnamaldehyde/ Eugenol | 1:4 or 1:8 | 50 | ||
Thymol/carvacrol | 1:1 | 25 | ||
Thymol/Eugenol | 1:4 | 50 | ||
Carvacrol/Eugenol | 1:4 or 1:8 | 25 | ||
Geraniol/menthol | S. aureus | 50 | Gallucci et al. [55] | |
Thymol/eugenol | B. cereus | 25 | ||
Eugenol/geraniol | 35 | |||
Thymol/menthol | 65 | |||
Geraniol/menthol | 94 | |||
Cinnamaldehyde/Thymol | S. typhinurium | 1:1 | 25 | Zhou et al. [57] |
Cinnamaldehyde/Carvacrol | 1:1 | 25 | ||
Thymol/carvacrol | 1:1 | 50 | ||
1,8-cineole/(+)-Limonene | S. aureus | 9:1, 8:2, 7:3, 6:4 | van Vuuren and Viljoen [61] | |
1,8-cineole/(±)-limonene | P. Aeruginosa | 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9 | ||
(+)limonene/(-)limonene | M. catarrhalis | 1:1 | 60 | |
α-pinene/limonene | S. cerevisiae | 96 | Tserennadmid et al. [62] | |
O. vulgare/Rosmarinus officinalis | L. monocytogenes , | 1:16 | 50 | de Azeredo et al. [63] |
Yersinia enterocolitica , | 1:16 | |||
Aeromonas hydrophilla | 1:16 | |||
P. fluorescens | 1:8 | |||
L. monocytogenes | 2:1 | 90 | ||
S. typhimurium | 2:1 | 90 | ||
S. aureus | 1:2 | 80 | ||
Lippia multiflora/Mentha piperita | E. faecalis | 5:3 | 91 | Bassole et al. [30] |
L. monocytogenes | 8:1 | 86 | ||
E. coli CIP | 16:1 | 81 | ||
M. piperita/O.basilicum | E. faecalis | 3:25 | 63 | |
L. monocytogenes | 3:25 | 73 | ||
S. thyphimirium | 1:1 | 31 | ||
S. dysenteria | 3:25 | 65 | ||
S. aureus | 3:25 | 64 | ||
S. aromaticum/R. officinalis | C. albicans | 1:5, 1:7; 1:9 | - | Fu et al. [42] |
C. zeylanicum/S. aromaticum | Y. enterocolitica , | - | 80 | Goni et al. [64] |
L. monocytogenes | - | 60 | ||
B. cereus | - | 50 | ||
C. citratus/C. giganteus | E. aerogenes | 2:1 | 60 | Bassole et al. [66] |
4. Mechanism of Action
- - Thymol or carvacrol could increase the permeability of the cytoplasmic membrane, and probably enable cinnamaldehyde to be more easily transported into the cell.
- - Thymol or carvacrol could increase the number, size or duration of existence of the pores created by the binding of cinnamaldehyde to proteins in the cell membrane, so that a synergistic effect is achieved when these two components are used in combination.
5. Other Factors Affecting the Interaction of Components
6. Conclusions
Acknowledgments
References
- Schafer, H.; Wink, M. Medicinally important secondary metabolites in recombinant microorganisms or plants: Progress in alkaloid biosynthesis. Biotechnol. J. 2009, 4, 1684–1703. [Google Scholar]
- Rosenthal, G.A. The biochemical basis for the deleterious effects of L-canavanine. Phytochemistry 1991, 30, 1055–1058. [Google Scholar]
- Wink, M. Functions of Plant Secondary Metabolites and Their Exploitation in Biotechnology; Sheffield Academic Press: Sheffield, UK, 1999; p. 362. [Google Scholar]
- van de Braak, S.A.A.J.; Leijten, G.C.J.J. Essential Oils and Oleoresins: A Survey in the Netherlands and Other Major Markets in the European Union; CBI, Centre for the Promotion of Imports from Developing Countries: Rotterdam, The Netherlands, 1999; p. 116. [Google Scholar]
- Balz, R. The Healing Power of Essential Oils, 1st ed; Lotus Press: Twin Lakes, WI, USA, 1999; pp. 27–80. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar]
- Guenther, E. The Essential Oils; van Nostrand Co., Inc.: New York, NY, USA, 1950. [Google Scholar]
- Boyle, W. Spices and essential oils as preservatives. Am. Perfum. Essent. Oil Rev. 1955, 66, 25–28. [Google Scholar]
- Guenther, E. The Essential Oils; D. van Nostrand: New York, NY, USA, 1948. [Google Scholar]
- Pichersky, E.; Noel, J.P.; Dudareva, N. Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science 2006, 311, 808–811. [Google Scholar]
- Burt, S. Essential oils: Their antimicrobial properties and potential applications in foods: A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar]
- Koroch, A.; Juliani, H.R.; Zygadlo, J.A. Bioactivity of Essential Oils and Their Components. In Flavours and Fragrances Chemistry, Bioprocessing and Sustainability; Berger, R.G., Ed.; Springer Verlag: Berlin, Germany, 2007; pp. 87–115. [Google Scholar]
- Delaquis, P.J.; Stanich, K.; Girard, B.; Mazza, G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 2002, 74, 101–109. [Google Scholar] [CrossRef]
- Davidson, P.M.; Parish, M.E. Methods for testing the efficacy of food antimicrobials. Food Technol. 1989, 43, 148–155. [Google Scholar]
- Gill, A.O.; Delaquis, P.; Russo, P.; Holley, R.A. Evaluation of antilisterial action of cilantro oil on vacuum packed ham. Int. J. Food Microbiol. 2002, 3, 83–92. [Google Scholar]
- Mourey, A.; Canillac, N. Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control 2002, 13, 289–292. [Google Scholar] [CrossRef]
- Harris, R. Synergism in the essential oil world. Int. J. Aromather. 2003, 12, 179–186. [Google Scholar]
- Karatzas, A.K.; Kets, E.P.W.; Smid, E.J.; Bennik, M.H.J. The combined action of carvacrol and high hydrostatic pressure on Listeria monocytogenes. J. Appl. Microbiol. 2001, 90, 463–469. [Google Scholar] [CrossRef]
- Santiesteban-Lopez, A.; Palou, E.; López-Malo, A. Susceptibility of food-borne bacteria to binary combinations of antimicrobials at selected a(w) and pH. J. Appl. Microbiol. 2007, 102, 486–497. [Google Scholar]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol. 2008, 124, 91–97. [Google Scholar]
- Bajpai, V.K.; Baek, K.-H.; Baek, S.C. Control of Salmonella in foods by using essential oils: A review. Food Res. Int. 2012, 45, 722–734. [Google Scholar]
- Kim, J.; Marshall, M.R.; Wei, C.I. Antibacterial activity of some essential oil components against five foodborne pathogens. J. Agric. Food Chem. 1995, 43, 2839–2845. [Google Scholar]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.; Nychas, G.J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar]
- Juliani, H.R.; Biurrun, F.; Koroch, A.R.; Oliva, M.M.; Demo, M.S.; Trippi, V.S.; Zygadlo, J.A. Chemical constituents and antimicrobial activity of the essential oil of Lantana xenica mold. Planta Med. 2002, 68, 756–762. [Google Scholar]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar]
- Cox, S.D.; Mann, C.M.; Markham, J.L. Interactions between components of the essential oil of Melaleuca alternifolia. J. Appl. Microbiol. 2001, 91, 492–497. [Google Scholar] [CrossRef]
- Cosentino, S.; Tuberoso, C.I.G.; Pisano, B.; Satta, M.; Mascia, V.; Arzedi, E.; Palmas, F. In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. J. Appl. Microbiol. 1999, 29, 130–135. [Google Scholar] [CrossRef]
- Dormans, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar]
- Ben Arfa, A.; Combes, S.; Preziosi-Belloy, L.; Gontard, N.; Chalier, P. Antimicrobial activity of carvacrol related to its chemical structure. J. Appl. Microbiol. 2006, 43, 149–154. [Google Scholar]
- Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Tirogo, S.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination. Molecules 2010, 15, 7825–7839. [Google Scholar] [CrossRef]
- Inouye, S.; Yamaguchi, H.; Takizawa, T. Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. J. Inf. Chemother. 2001, 7, 251–254. [Google Scholar]
- Barros, J.C.; Conceição, M.L.; Gomes Neto, N.J.; Costa, A.C.V.; Siqueira Júnior, J.P.; Basílio Júnior, I.D. Interference of Origanum vulgare L. essential oil on the growth and some physiological characteristics of Staphylococcus aureus strains isolated from foods. LWT Food Sci. Technol. 2009, 42, 1139–1143. [Google Scholar] [CrossRef]
- Nostro, A.; Cannatelli, M.A.; Musolino, A.D.; Procopio, F.; Alonzo, V. Helichrysum italicum extract interferes with the production of enterotoxins by Staphylococcus aureus. J. Appl. Microbiol. 2002, 35, 181–184. [Google Scholar] [CrossRef]
- Carson, C.F.; Riley, T.V. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J. Appl. Bacteriol. 1995, 78, 264–269. [Google Scholar] [CrossRef]
- Griffin, G.S.; Wyllie, G.S.; Markham, L.J.; Leach, D.N. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr. J. 1999, 14, 322–332. [Google Scholar]
- Tajkarimi, M.M.; Ibrahima, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218. [Google Scholar]
- Sachetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 2005, 91, 621–632. [Google Scholar]
- Ait-Ouazzou, A.; Cherrat, L.; Espina, L.; Lorán, S.; Rota, C.; Pagán, R. The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation. Innov. Food Sci. Emerg. 2011, 12, 320–329. [Google Scholar]
- Oussalah, M.; Caillet, S.; Saucier, L.; Lacroix, M. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: Escherichia coli O157:H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 2007, 18, 414–420. [Google Scholar] [CrossRef]
- Soković, M.D.; Vukojević, J.; Marin, P.D.; Brkić, D.D.; Vajs, V.; van Griensven, L.J.L.D. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 2009, 14, 238–249. [Google Scholar] [CrossRef]
- Hazzit, M.; Baaliouamer, A.; Verissimo, A.R.; Falerio, M.L.; Miguel, M.G. Chemical composition and biological activities of Algerian thymus oils. Food Chem. 2009, 116, 714–721. [Google Scholar]
- Fu, Y.J.; Zu, Y.G.; Chen, L.Y.; Shi, X.G.; Wang, Z.; Sun, S.; Efferth, T. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother. Res. 2007, 21, 989–994. [Google Scholar]
- Suresh, P.; Ingle, V.K.; Vijaya, L. Antibacterial activity of eugenol in comparison with other antibiotics. J. Food Sci. Technol. 1992, 29, 256–257. [Google Scholar]
- Juliani, H.R.; Simon, J.E.; Ramboatiana, M.M.R.; Behra, O.; Garvey, A.; Raskin, I. Malagasy aromatic plants: Essentials, antioxidant and antimicrobial activities. Acta Hortic. 2004, 629, 77–81. [Google Scholar]
- Prabuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med. 2006, 6, 39. [Google Scholar] [CrossRef]
- Juliani, H.R.; Koroch, A.R.; Simon, J.E. Chemical Diversity of Essential Oils of Ocimum species and Their Associated Antioxidant and Antimicrobial Activity. In Essential Oils and Aromas: Green Extractions and Applications; Chemat, F., Varshney, V.K., Allaf, K., Eds.; Har Krishan Bhalla & Sons: Dehradun, India, 2009. [Google Scholar]
- Southwell, I.A.; Hayes, A.J.; Markham, J.L.; Leach, D.N. The search for optimally bioactive Australian tea tree oil. Acta Hortic. 1993, 334, 265–275. [Google Scholar]
- Lis-Balchin, M.; Deans, S.G. Bioactivity of selected plant essential oil against Listeria monocytogenes. J. Appl. Microbiol. 1997, 82, 759–762. [Google Scholar]
- Demirci, B.; Kosar, M.; Demirci, F.; Dinc, M.; Baser, K.H.C. Antimicrobial and antioxidant activities of the essential oil of Chaerophyllum libanoticum Boiss. et Kotschy. Food Chem. 2007, 105, 1512–1517. [Google Scholar] [CrossRef]
- Tabanca, N.; Demirci, F.; Demirci, B.; Wedge, D.E.; Baser, K.H.C. Composition, enantiomeric distribution, and antimicrobial activity of Tanacetum argenteum subsp. flabellifolium essential oil. J. Pharm. Biomed. 2007, 45, 714–719. [Google Scholar] [CrossRef]
- Chéraif, I.; Ben Jannet, H.; Hammami, M.; Khouja, M.L.; Mighri, Z. Chemical composition and antimicrobial activity of essential oils of Cupressus arizonica Greene. Biochem. Syst. Ecol. 2007, 35, 813–820. [Google Scholar] [CrossRef]
- Delgado, B.; Fernández, P.S.; Palop, A.; Periago, P.M. Effect of thymol and cymene on Bacillus cereus vegetative cells evaluated through the use of frequency distribution. Food Microbiol. 2004, 21, 327–334. [Google Scholar]
- Nychas, G.J.E. Natural Antimicrobials from Plants. In New Methods of Food Preservation; Gould, G.W., Ed.; Blackie Academic and Professional: London, UK, 1995; pp. 58–89. [Google Scholar]
- Pei, R.S.; Zhou, F.; Ji, B.P.; Xu, J. Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved Method. J. Food Sci. 2009, 74, 379–383. [Google Scholar] [CrossRef]
- Gallucci, M.N.; Oliva, M.; Casero, C.; Dambolena, J.; Luna, A.; Zygadlo, J.; Demo, M. Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr. J. 2009, 24, 348–354. [Google Scholar] [CrossRef]
- Rivas, L.; McDonnell, M.J.; Burgess, C.M.; O’Brien, M.; Navarro-Villa, A.; Fanning, S. Inhibition of vercytotoxigenic Escherichia coli in model broth and rumen systems by carvacrol and thymol. Int. J. Food Microbiol. 2010, 139, 70–78. [Google Scholar] [CrossRef]
- Zhou, F.; Ji, B.; Zhang, H.; Jiang, H.; Yang, Z.; Li, J.; Li, J.; Yan, W. The antibacterial effect of cinnamaldehyde, thymol, carvacrol and their combinations against the food-borne pathogen Salmonella typhimurium. J. Food Saf. 2007, 27, 124–133. [Google Scholar] [CrossRef]
- Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Prot. 2000, 63, 620–624. [Google Scholar]
- Moleyar, V.; Narasimham, P. Antibacterial activity of essential oil components. Int. J. Food Microbiol. 1992, 16, 337–342. [Google Scholar]
- Mulyaningsih, S.; Sporer, F.; Zimmermann, S.; Reichling, J.; Wink, M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine 2010, 17, 1061–1066. [Google Scholar] [CrossRef]
- van Vuuren, S.F.; Viljoen, A.M. Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination. Flavour Fragr. J. 2007, 22, 540–544. [Google Scholar]
- Tserennadmid, R.; Takó, M.; Galgóczy, L.; Papp, T.; Pesti, M.; Vágvölgyi, C.; Almássy, K.; Krisch, J. Anti yeast activities of some essential oils in growth medium, fruit juices and milk. Int. J. Food Microbiol. 2011, 144, 480–486. [Google Scholar]
- de Azeredo, G.A.; Stamford, T.L.M.; Nunes, P.C.; Neto, N.J.G.; de Oliveira, M.E.G.; de Souza, E.L. Combined application of essential oils from Origanum vulgare L. and Rosmarinus officinalis L. to inhibit bacteria and autochthonous microflora associated with minimally processed vegetables. Food Res. Int. 2011, 44, 1541–1548. [Google Scholar]
- Goñi, P.; López, P.; Sánchez, C.; Gómez-Lus, R.; Becerril, R.; Nerín, C. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem. 2009, 116, 982–989. [Google Scholar]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 2009, 26, 142–150. [Google Scholar]
- Bassolé, I.H.N.; Lamien-Meda, A.; Bayala, B.; Obame, L.C.; Ilboudo, A.J.; Franz, C.; Novak, J.; Nebié, R.C.; Dicko, M.H. Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination. Phytomedicine 2011, 18, 1070–1074. [Google Scholar] [CrossRef]
- Mackay, M.L.; Milne, I.M.; Gould, I.M. Comparison of methods for assessing synergic antibiotic interactions. Int. J. Antimicrob. Agents 2000, 15, 125–129. [Google Scholar]
- White, R.L.; Burgess, D.S.; Manduru, M.; Bosso, J.A. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrob. Agents Chemother. 1996, 40, 1914–1918. [Google Scholar]
- Tallarida, R.J. Drug synergism: Its detection and applications. J. Pharmacol. Exp. Ther. 2001, 298, 865–872. [Google Scholar]
- Shin, S.; Kang, C.A. Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. J. Appl. Microbiol. 2003, 36, 111–115. [Google Scholar]
- Filoche, S.K.; Soma, K.; Sissons, C.H. Antimicrobial effects of essential oils in combination with chlorhexidine digluconate. Oral Microbiol. Immunol. 2005, 20, 221–225. [Google Scholar]
- Zhou, F.; Ji, B.; Zhang, H.; Jiang, H.; Yang, Z.; Li, J.; Li, J.; Yan, W. Synergistic effect of thymol and carvacrol combined with chelators and organic acids against Salmonella typhimurium. J. Food Prot. 2007, 70, 1704–1709. [Google Scholar]
- Hall, M.J.; Middleton, R.F.; Westmacott, D. The fractional inhibitory concentration (FIC) index as a measure of synergy. J. Antimicrob. Chemother. 1983, 11, 427–433. [Google Scholar]
- Krogstad, D.J.; Moellering, R.C., Jr. Antimicrobial Combinations. In Antibiotics in Laboratory Medicine, 2nd; Lorian, V., Ed.; Williams & Wilkins: Baltimore, MD, USA, 1986; pp. 537–595. [Google Scholar]
- Schelz, A.; Molnar, J.; Hohmann, J. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 2006, 77, 279–285. [Google Scholar]
- Zore, G.B.; Thakre, A.D.; Jadhav, S.; Karuppayil, S.M. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 2011, 18, 1181–1190. [Google Scholar] [CrossRef]
- Rosato, A.; Vitali, C.; de Laurentis, N.; Armenise, D.; Nulillo, M.A. Antibacterial effect of some essential oils administered alone or in combination with norfloxacin. Phytomedicine 2007, 14, 727–732. [Google Scholar]
- Romano, C.S.; Abadi, K.; Repetto, V.; Vojnov, A.A.; Moreno, S. Synergistic antioxidant and antibacterial activity of rosemary plus butylated derivatives. Food Chem. 2009, 115, 456–461. [Google Scholar]
- Tan, T.Q.; Mason, E.O.; Ou, C.N.; Kaplan, S.L. Use of intravenous rifampin in neonates with persistent staphylococcal bacteremia. Antimicrob. Agents Chemother. 1993, 37, 2401–2406. [Google Scholar]
- Singh, P.K.; Tack, B.F.; Mccray, P.B., Jr.; Welsh, M.J. Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279, L799–L805. [Google Scholar]
- Kamatou, G.P.P.; Viljoen, A.M.; van Vuuren, S.F.; van Zyl, R.L. In vitro evidence of antimicrobial synergy between Salvia chamelaeagnea and Leonotis leonurus. S. Afr. J. Bot. 2006, 72, 634–637. [Google Scholar] [CrossRef]
- Fyfe, L.; Armstrong, F.; Stewart, J. Inhibition of Listeria monocytogenes and Salmonella enteriditis by combinations of plant oils and derivatives of benzoic acid: The development of synergistic antimicrobial combinations. Int. J. Antimicrob. Agents 1998, 9, 195–199. [Google Scholar] [CrossRef]
- Burt, S.A.; van der Zee, R.; Koets, A.P.; de Graaff, A.M.; van Knapen, F.; Gaastra, W.; Haagsman, H.P.; Veldhuizen, E.J. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Appl. Environ. Microbiol. 2007, 73, 4484–4490. [Google Scholar]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial activity of three monoterpenes. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar]
- Hayouni, E.; Bouix, M.; Abedrabba, M.; Leveau, J.Y.; Hamdi, M. Mechanism of action of Melaleuca armillaris (Sol. Ex Gaertu) Sm. essential oil on six LAB strains as assessed by multiparametric flow cytometry and automated microtiter-based assay. Food Chem. 2008, 111, 707–718. [Google Scholar] [CrossRef]
- Pandima Devi, K.; Arif Nisha, S.; Sakthivel, R.; Karutha Pandian, S. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar]
- Misaghi, A.; Basti, A.A. Effects of Zataria multiflora Boiss. essential oil and nisin on Bacillus cereus ATCC 11778. Food Control 2007, 18, 1043–1049. [Google Scholar] [CrossRef]
- Rajkovic, A.; Uyttendaele, M.; Courtens, T.; Debevere, J. Antimicrobial effect of nisin and carvacrol and competition between Bacillus cereus and Bacillus circulans in acuum-packed potato puree. Food Microbiol. 2005, 22, 189–197. [Google Scholar] [CrossRef]
- Yamazaki, K.; Yamamoto, T.; Kawai, Y.; Inoue, N. Enhancement of antilisterial activity of essential oil constituents by nisin and diglycerol fatty acid ester. Food Microbiol. 2004, 21, 283–289. [Google Scholar]
- Shahverdi, A.R.; Rafii, F.; Fazeli, M.R.; Jamalifar, H. Enhancement of antimicrobial activity of furazolidone and nitrofurantoin against clinical isolates of Enterobacteriaceae by piperitone. Int. J. Aromather. 2004, 14, 77–80. [Google Scholar]
- Grande, M.J.; Lopez, R.L.; Abriouel, H.; Valdivia, E.; Ben Omar, N.; Maqueda, M.; Martinez-Canamero, M.; Galvez, A. Treatment of vegetable sauces with enterocin AS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus. J. Food Prot. 2007, 70, 405–411. [Google Scholar]
- Yoon, J.I.; Bajpai, V.K.; Kang, S.C. Synergistic effect of nisin and cone essential oil of Metasequoia glyptostroboides Miki ex Hu against Listeria monocytogenes in milk samples. Food Chem. Toxicol. 2011, 49, 109–114. [Google Scholar] [CrossRef]
- Moosavy, M.H.; Basti, A.A.; Misaghi, A.; Salehi, T.Z.; Abbasifar, R.; Ebrahimzadeh Mousavi, H.A.; Alipour, M.; Razavi, N.E.; Gandomi, H.; Noori, N. Effect of Zataria multiflora Boiss. essential oil and nisin on Salmonella typhimurium and Staphylococcus aureus in a food model system and on the bacterial cell membranes. Food Res. Int 2008, 41, 1050–1057. [Google Scholar] [CrossRef]
- Pyun, M.-S.; Shin, S. Antifungal effects of the volatile oils from Allium plants against Trichophyton species and synergism of the oils with ketaconazole. Phytomedicine 2006, 13, 394–400. [Google Scholar] [CrossRef]
- Shiota, S.; Shimizu, M.; Mizushima, M.; Ito, H.; Hatano, T.; Yoshida, T.; Tsuchiya, T. Restoration of effectiveness of β-lactams on methicillin resistant Staphylococcus aureus by tellimagrandin I from rose red. FEMS Microbiol. Lett. 2000, 185, 135–138. [Google Scholar]
- Shiota, S.; Shimizu, M.; Sugiyama, J.; Morita, Y.; Mizushima, T.; Tsuchiya, T. Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of β-lactams againstmethicillin-resistant Staphylococcus aureus. Microbiol. Immunol. 2004, 48, 67–73. [Google Scholar]
- Lee, S.H.; Kin, C.J. Selective combination effect of anethole to antifungal activities of miconazole and amphotericin B. Yakhak Hoeji 1999, 43, 228–232. [Google Scholar]
- Giordani, R.; Regli, P.; Kaloustian, J.; Mikail, C.; Abou, L.; Portugal, H. Antifungal effect of various essential oils against Candidaalbicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother. Res. 2004, 18, 990–995. [Google Scholar] [CrossRef]
- Rosato, A.; Vitali, C.; de Laurentis, N.; Armenise, D.; Nulillo, M.A. Antibacterial effect of some essential oils administered alone or in combination with norfloxacin. Phytomedicine 2007, 14, 727–732. [Google Scholar]
- Dimitrijevic, S.I.; Mihajlovski, K.R.; Antonovic, D.G.; Milanovic-Stevanovic, M.R.; Mijin, D.Z. A study of the synergistic antilisterial effects of a sub-lethal dose of lactic acid and essential oils from Thymus vulgaris L., Rosmarinus officinalis L. and Origanum vulgare L. Food Chem. 2007, 104, 774–782. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the foodborne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef]
- Fei, L.; Hao, L.; Qipeng, Y.; Chunfang, L. In vitro antimicrobial effects and mechanism of action ofselected plant essential oil combinations against four food-related microorganisms. Food Res. Int. 2011, 44, 3057–3064. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Lucera, A.; Milena, S.; Corbo, M.R. Combined effects of thymol, carvacrol and temperature on the quality of non-conventional poultry patties. Meat Sci. 2009, 83, 246–254. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bassolé, I.H.N.; Juliani, H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules 2012, 17, 3989-4006. https://doi.org/10.3390/molecules17043989
Bassolé IHN, Juliani HR. Essential Oils in Combination and Their Antimicrobial Properties. Molecules. 2012; 17(4):3989-4006. https://doi.org/10.3390/molecules17043989
Chicago/Turabian StyleBassolé, Imaël Henri Nestor, and H. Rodolfo Juliani. 2012. "Essential Oils in Combination and Their Antimicrobial Properties" Molecules 17, no. 4: 3989-4006. https://doi.org/10.3390/molecules17043989
APA StyleBassolé, I. H. N., & Juliani, H. R. (2012). Essential Oils in Combination and Their Antimicrobial Properties. Molecules, 17(4), 3989-4006. https://doi.org/10.3390/molecules17043989