Effect of Ionic Liquid on the Determination of Aromatic Amines as Contaminants in Hair Dyes by Liquid Chromatography Coupled to Electrochemical Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cyclic Voltammetric Investigations
Amine compounds | LiCl | BMIm[NTf2] | ||||||
---|---|---|---|---|---|---|---|---|
Ea 1 (V) | Ea 2 (V) | IpaI (µA) | IpaII (µA) | Ea 1 (V) | Ea 2 (V) | IpaI (µA) | IpcII (µA) | |
2,4-Diaminotoluidine | +0.56 | -- | 15.6 | -- | -- | 0.90 | -- | -- |
2-Chloro-4-nitroaniline | +0.73 | -- | 12.8 | -- | +0.68 | -- | 18.6 | -- |
2-Methoxy-5-methylaniline | +0.70 | +0.89 | 10.3 | 8.9 | -- | 0.91 | -- | -- |
2-Naphthylamine | +0.80 | -- | 14.5 | -- | +0.70 | -- | 16.5 | -- |
3,3'-Dimethylbenzidine | +0.53 | +0.86 | 11.4 | 12.3 | +0.46 | +0.90 | 12.3 | 10.4 |
4,4'-Diaminodiphenylmethane | +0.81 | - | 13.5 | -- | +0.68 | -- | 16.8 | -- |
4,4'-Methylene-bis-chloroaniline | +0.57 | - | 9.3 | -- | +0.85 | -- | -- | |
4,4'-Oxydianiline | +0.35 | +0.69 | 6.7 | 6.2 | +0.55 | +0.50 | 6.2 | 6.8 |
4-Aminobiphenyl | +0.78 | -- | 9.8 | -- | +0.78 | -- | 9.1 | -- |
4-Chloroaniline | +0.43 | -- | 8.6 | +0.71 | -- | 12.8 | -- | |
Aniline | +0.91 | -- | 9.6 | -- | +0.45 | 0.95 | 10.3 | 14.4 |
Benzidine | +0.54 | +0.82 | 10.3 | 13.2 | +0.92 | -- | 12.4 | |
o-Anisidine | +0.75 | -- | 9.1 | -- | +0.75 | -- | 10.2 | -- |
o-Dianisidine | +0.49 | +0.62 | 14.4 | 14.8 | +0.93 | -- | 15.2 | -- |
o-Toluidine | +0.86 | -- | 12.8 | -- | +0.72 | -- | 14.2 | -- |
2.2. HPLC/ED Optimizations
2.2.1. Optimization of Mobile Phases
2.2.2. Separation of Aromatic Amines After Addition of BMIm[NTf2] in the Mobile Phase
2.2.3. Analytical Curves
Amines | A ** | B *** | N | R | SD | L.O.D. | L.O.Q. | As | Np | Rec. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 2 | |||||||||
2,4-Diaminotoluidine | 4350.89 | 2035.16 | 5 | 0.998 | 686.0 | 0.110 | 0.337 | 0.85 | 0.92 | 31211.1 | 9421.9 | 100 |
4,4'-Oxydianiline | 16596.20 | 2424.22 | 6 | 0.993 | 795.6 | 0.108 | 0.328 | -- | 0.90 | 6491.8 | 5842.1 | 98 |
Benzidine | 24.50 | 70.04 | 6 | 0.997 | 26.13 | 0.123 | 0.374 | 0.84 | 0.96 | 24214.4 | 22548.7 | 97 |
Aniline | 5286.40 | 1105.63 | 6 | 0.996 | 664.8 | 0.098 | 0.600 | 0.78 | 1.02 | 42642.3 | 26437.0 | 99 |
o-Dianisidine | 7178.19 | 1813.43 | 6 | 0.997 | 597.8 | 0.303 | 0.113 | 0.80 | 0.94 | 190096.0 | 31604.9 | 100 |
o-Anisidine | −8505.88 | 2230.6 | 6 | 0.998 | 680.3 | 0.103 | 0.303 | 0.77 | 0.96 | 89301.4 | 56808.3 | 103 |
o-Toluidine | 26373.5 | 2049.62 | 6 | 0.997 | 651.4 | 0.091 | 0.276 | 0.82 | 0.95 | 95378.0 | 66528.4 | 100 |
2-Naphthylamine | 48572.45 | 4245.71 | 6 | 0.999 | 128.7 | 0.101 | 0.305 | 0.78 | 0.98 | 127925.4 | 45033.3 | 103 |
4,4'-Methylene-bis-2-chloroaniline | 4549.79 | 1818.46 | 6 | 0.998 | 695.8 | 0.126 | 0.382 | 0.81 | 0.97 | 28985.1 | 156528.1 | 100 |
4,4'-Diaminodiphenyl-methane | 181.89 | 50.69 | 9 | 0.999 | 21.2 | 0.117 | 0.416 | 0.79 | 0.96 | 11844.7 | 1972.8 | 99 |
3,3'-Dimethylbenzidine | −753.02 | 250.09 | 9 | 0.997 | 162.5 | 0.021 | 0.638 | 0.78 | 0.99 | 22901.8 | 4956.2 | 95 |
2-Methoxy-5-methyl-aniline | 317.02 | 81.64 | 9 | 0.999 | 88.5 | 0.036 | 1.078 | 0.78 | 0.95 | 20544.4 | 6833.8 | 100 |
4-Chloroaniline | −108.03 | 72.00 | 9 | 0.997 | 26.6 | 0.120 | 0.368 | 0.76 | 0.98 | 39151.2 | 7932.9 | 105 |
2-Chloro-4-nitroaniline | −342.46 | 196.29 | 9 | 0.999 | 82.8 | 0.163 | 0.495 | -- | 0.96 | 6491.8 | 9216.7 | 98 |
4-Aminobiphenyl | 433.67 | 166.55 | 9 | 0.999 | 82.9 | 0.162 | 0.497 | 0.79 | 0.98 | 42642.2 | 52399.4 | 97 |
3,3'-Dichlorobenzidine | −339.63 | 464.56 | 9 | 0.999 | 120.6 | 0.246 | 2.021 | 0.81 | 0.96 | 51680.4 | 34110.3 | 96 |
2.3. Evaluation of Aromatic Amines in Commercial Dyeing Sample
3. Experimental
3.1. Reagents
3.2. Instrumentation
3.2.1. Voltammetric Analysis
3.2.2. HPLC Analysis
3.2.3. Analysis of Dyes in the Commercial Sample
4. Conclusions
Acknowledgments
References
- Akyüz, M.; Ata, S. Determination of aromatic amines in hair dye and henna samples by ion-pair extraction and gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 2008, 47, 68–80. [Google Scholar] [CrossRef]
- Lloret, S.M.; Legua, C.M.; Falco, P.C. Preconcentration and dansylation of aliphatic amines using C-18 solid-phase packings—Application to the screening analysis in environmental water samples. J. Chromatogr. A 2002, 978, 59–69. [Google Scholar] [CrossRef]
- Possanzini, M.; Palo, V.D. Improved HPLC determination of Aliphatic-Amines in air by diffusion and derivatization techniques. Chromatographia 1990, 29, 151–160. [Google Scholar] [CrossRef]
- Vineis, P.; Pirastu, R. Aromatic amines and cancer. Cancer Causes Control 1997, 8, 346–355. [Google Scholar] [CrossRef]
- Wang, S.P.; Huang, T.H. Separation and determination of aminophenols and phenylenediamines by liquid chromatography and micellar electrokinetic capillary chromatography. Anal. Chim. Acta 2005, 534, 207–214. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, H.; Wan, G.H.; Duan, C.F.; Cui, H. Enhancing and inhibiting effects of aromatic compounds on luminol-dimethylsulfoxide-OH-chemiluminescence and determination of intermediates in oxidative hair dyes by HPLC with chemiluminescence detection. Talanta 2004, 64, 467–477. [Google Scholar] [CrossRef]
- Eggenreicha, K.; Zacha, E.; Beckb, H.; Wintersteiger, R. Determination of 4-amino-m-cresol and 5-amino-o-cresol by high performance liquid chromatography and fluorescence derivatization using fluorescamine. J. Biochem. Biophys. Meth. 2004, 61, 35–46. [Google Scholar] [CrossRef]
- Turesky, R.J.; Freeman, J.P.; Holland, R.D.; Nestorick, D.M.; Miller, D.W.; Ratnasinghe, D.L.; Kadlubar, F.F. Identification of Aminobiphenyl Derivatives in Commercial Hair Dyes. Chem. Res. Toxicol. 2003, 16, 1162–1173. [Google Scholar] [CrossRef]
- Sosted, H.; Rastogi, S.C.; Andersen, K.E.; Johanses, J.D.; Menne, T. Hair dye contact allergy: quantitative exposure assessment of selected products and clinical cases. Contact Derm. 2004, 50, 344–348. [Google Scholar] [CrossRef]
- Gosetti, F.; Chiuminatto, U.; Zampieri, D.; Mazzucco, E.; Marengo, E.; Gennaro, M.C. A new on-line solid phase extraction high performance liquid chromatography tandem mass spectrometry method to study the sun light photodegradation of mono-chloroanilines in river water. J. Chrom. 2010, 3427–3434. [Google Scholar]
- Lin, C.E.; Chen, Y.T.; Wang, T. Separation of benzenediamines, benzenediols and aminophenols in oxidative hair dyes by micellar electrokinetic chromatography using cationic surfactants. J. Chromatogr. A 1999, 837, 241–252. [Google Scholar] [CrossRef]
- Gioia, M.L.D.; Leggio, A.; Pera, A.L.; Liguori, A.; Napoli, A.; Perri, F.; Siciliano, C. Determination by gas chromatography/mass spectrometry of p-phenylenediamine in hair dyes after conversion to an imine derivative. Chromatogr. A 2005, 1066, 143–148. [Google Scholar] [CrossRef]
- Tokuda, H.; Kimura, Y.; Takano, S. Determination of Dye Intermediates in Oxidative Hair-Dyes by Fused-Silica Capillary Gas-Chromatography. J. Chromatogr. 1986, 367, 345–356. [Google Scholar] [CrossRef]
- Pinheiro, H.M.; Touraud, E.; Thoma, O. Aromatic amines from azo dye reduction: Status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigments 2004, 61, 121–139. [Google Scholar] [CrossRef]
- Akyüz, M.; Ata, S. Simultaneous determination of aliphatic and aromatic amines in water and sediment samples by ion-pair extraction and gas chromatography-mass spectrometry. J. Chromatogr. A 2006, 1129, 88–94. [Google Scholar] [CrossRef]
- Akyüz, M. Simultaneous determination of aliphatic and aromatic amines in indoor and outdoor air samples by gas chromatography-mass spectrometry. Talanta 2007, 71, 486–492. [Google Scholar] [CrossRef]
- Shelke, M.; Sanghi, S.K.; Asthana, A.; Lamba, S.; Sharma, M. Fast separation and sensitive detection of carcinogenic aromatic amines by reversed-phase mu-liquid chromatography coupled with electrochemical detection. J. Chromatogr. A 2005, 1089, 52–58. [Google Scholar] [CrossRef]
- Mortensen, S.K.; Trier, X.T.; Foverskov, A.; Petersen, J.H. Specific determination of 20 primary aromatic amines in aqueous food simulants by liquid chromatography-electrospray ionization-tandem mass spectrometry. J. Chromatogr. A 1091, 40–50. [Google Scholar]
- Brede, C.; Skjevrak, I.; Herikstad, H. Determination of primary aromatic amines in water food simulant using solid-phase analytical derivatization followed by gas chromatography coupled with mass spectrometry. J. Chromatogr. A 2003, 983, 35–42. [Google Scholar] [CrossRef]
- Wang, L.H.; Tsai, S.J. Simultaneous determination of oxidative hair dye p-phenylenediamine and its metabolites in human and rabbit biological fluids. Anal. Biochem. 2003, 312, 201–207. [Google Scholar]
- Weis, T.; Angerer, J. Specific determination of aromatic amines in aqueous by liquid chromatography. J. Chromatogr. B 2002, 778, 179–192. [Google Scholar] [CrossRef]
- Grimmer, G.; Dettbarn, G.; Seidel, A.; Jacob, J. Detection of carcinogenic aromatic amines in the urine of non-smokers. Sci. Total Environ. 2000, 247, 81–90. [Google Scholar] [CrossRef]
- Ahlström, L.H.; Eskilsson, C.S.; Björklund, E. Determination of banned azo dyes in consumer goods. Trac-Trend Anal. Chem. 2005, 24, 49–56. [Google Scholar] [CrossRef]
- Ahlstöm, L.H.; Raab, J.; Mathiasson, L. Application of standard addition methodology for the determination of banned azo dyes in different leather types. Anal. Chim. Acta 2005, 552, 76–80. [Google Scholar] [CrossRef]
- Bhaskar, M.; Gnanamani, A.; Ganeshjeevan, R.J.; Chandrasekar, R.; Sadulla, S.; Radhakrishnan, G. Analyses of carcinogenic aromatic amines released from harmful azo colorants by Streptomyces SPSS07. J. Chromatogr. A 2003, 1018, 117–123. [Google Scholar] [CrossRef]
- Garrigós, M.C.; Reche, F.; Marín, M.L.; Jiménez, A. Determination of aromatic amines formed from azo colorants in toy products. J. Chromatogr. A 2002, 976, 309–317. [Google Scholar] [CrossRef]
- Oh, S.W.; Kang, M.N.; Cho, C.W.; Lee, M.W. Detection of carcinogenic amines from dyestuffs or dyed substrates. Dyes Pigments 1997, 33, 119–135. [Google Scholar] [CrossRef]
- Mazzo, T.M.; Saczk, A.A.; Umbuzeiro, G.A.; Zanoni, M.V.B. Analysis of Aromatic Amines in Surface Waters Receiving Wastewater from a Textile Industry by Liquid Chromatographic with Electrochemical Detection. Anal. Lett. 2007, 10, 56–64. [Google Scholar]
- Kissinger, P.T. Electrochemical Detectors. In Liquid Chromatography Detectors; Vickrey, T.H., Ed.; Marcel Dekker: New York, NY, USA, 1986; Volume 2, Chapter 4, pp. 125–164. [Google Scholar]
- Kaliszan, R.; Marszałł, M.P.; Markuszewski, M.J.; Baczek, T.; Pernak, J. Suppression of deleterious effects of free silanols in liquid chromatography by imidazolium tetrafluoroborate ionic liquids. J. Chromatogr. A 2004, 1030, 263–271. [Google Scholar] [CrossRef]
- Buzzeo, M.C.; Evans, R.G.; Compton, R.G. Non-haloaluminate room-temperature ionic liquids in electrochemistry—A review. Chem. Phys. Chem. 2004, 5, 1106–1120. [Google Scholar] [CrossRef]
- Hapiot, P.; Lagrost, C. Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 2008, 108, 2238–2264. [Google Scholar] [CrossRef]
- Zanoni, M.V.B.; Rogers, E.I.; Hardacre, C.; Compton, R.G. The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids. Anal. Chim. Acta 2010, 659, 115–121. [Google Scholar] [CrossRef]
- Marszałł, P.M.; Baczek, T.; Kaliszan, R. Reduction of silanophilic interactions in liquid chromatography with the use of ionic liquids. Anal Chim Acta 2005, 547, 172–178. [Google Scholar] [CrossRef]
- Sacher, F.; Lenz, S.; Brauch, H.J. Analysis of primary and secondary aliphatic amines in waste water and surface water by gas chromatography mass spectrometry after derivatization with 2,4-dinitrofluorobenzene or benzenesulfonyl chloride. J. Chromatogr. A 1997, 764, 85–90. [Google Scholar] [CrossRef]
- Chia, K.J.; Huang, S.D. Simultaneous derivatization and extraction of primary amines in river water with dynamic hollow fiber liquid-phase microextraction followed by gas chromatography-mass spectrometric detection. J. Chromatogr. A 2006, 1103, 1580–1585. [Google Scholar]
- Deng, C.; Li, N.; Wang, L.; Zhang, X. Development of gas chromatography-mass spectrometry following headspace single-drop microextraction and simultaneous derivatization for fast determination of short-chain aliphatic amines in water samples. J. Chromatogr. A 2006, 1131, 45–50. [Google Scholar] [CrossRef]
- Llop, A.; Pocurull, E.; Borrull, F. Automated determination of aliphatic primary amines in wastewater by simultaneous derivatization and headspace solid-phase microextraction followed by gas chromatography-tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 575–581. [Google Scholar] [CrossRef]
- Akyuz, M.; Ata, S. Simultaneous determination of aliphatic and aromatic amines in water and sediment samples by ion-pair extraction and gas chromatography-mass spectrometry. J. Chromatogr. A 2006, 1129, 88–94. [Google Scholar] [CrossRef]
- Akyuz, M. Simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters by gas chromatography-mass spectrometry. Atmos. Environ. 2008, 42, 3809–3819. [Google Scholar] [CrossRef]
- Namiesnik, J.; Jastrzebska, A.; Zygmunt, B. Determination of volatile aliphatic amines in air by solid-phase microextraction coupled with gas chromatography with flame ionization detection. J. Chromatogr. A 2003, 1016, 1–9. [Google Scholar] [CrossRef]
- Kaykhaii, M.; Nazari, S.; Chamsaz, M. Determination of aliphatic amines in water by gas chromatography using headspace solvent microextraction. Talanta 2005, 65, 223–228. [Google Scholar] [CrossRef]
- Kamarei, F.; Ebrahimzadeh, H.; Yamini, Y. Optimization of solvent bar microextraction combined with gas chromatography for the analysis of aliphatic amines in water samples. J. Hazard. Mater. 2010, 178, 747–752. [Google Scholar] [CrossRef]
- Calero, A.M.; Pino, V.; Ayala, J.H.; González, V.; Afonso, A.M. Ionic liquids as mobile phase additives in high-performance liquid chromatography with electrochemical detection: Application to the determination of heterocyclic aromatic amines in meat-based infant foods. Talanta 2009, 79, 590–597. [Google Scholar] [CrossRef]
- Baizer, M.M.; Lund, H. Organic Electrochemistry: An Introduction and Guide, 3rd ed; Marcel Dekker: New York, NY, USA, 1991; pp. 242–245. [Google Scholar]
- Lee, H.S.; Choi, S.J.; Lee, H.M.; Jeong, C.K.; Kim, S.B.; Lee, J.T.; Yoo, S.D.; DeLuca, P.P.; Lee, C.K. Determination of salmon calcitonin in formulations by high-performance liquid chromatography with electrochemical detection. Chromatographia 1999, 50, 701–704. [Google Scholar] [CrossRef]
- Snyder, L.R.; Kirkland, J.J.; Glajch, J.L. Practical HPLC Method Development, 2nd ed; John Wiley & Sons, INC: New York, NY, USA, 1997; pp. 645–646. [Google Scholar]
- Sample Availability: Samples of the hair dyes were available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lizier, T.M.; Boldrin Zanoni, M.V. Effect of Ionic Liquid on the Determination of Aromatic Amines as Contaminants in Hair Dyes by Liquid Chromatography Coupled to Electrochemical Detection. Molecules 2012, 17, 7961-7979. https://doi.org/10.3390/molecules17077961
Lizier TM, Boldrin Zanoni MV. Effect of Ionic Liquid on the Determination of Aromatic Amines as Contaminants in Hair Dyes by Liquid Chromatography Coupled to Electrochemical Detection. Molecules. 2012; 17(7):7961-7979. https://doi.org/10.3390/molecules17077961
Chicago/Turabian StyleLizier, Thiago Mescoloto, and Maria Valnice Boldrin Zanoni. 2012. "Effect of Ionic Liquid on the Determination of Aromatic Amines as Contaminants in Hair Dyes by Liquid Chromatography Coupled to Electrochemical Detection" Molecules 17, no. 7: 7961-7979. https://doi.org/10.3390/molecules17077961
APA StyleLizier, T. M., & Boldrin Zanoni, M. V. (2012). Effect of Ionic Liquid on the Determination of Aromatic Amines as Contaminants in Hair Dyes by Liquid Chromatography Coupled to Electrochemical Detection. Molecules, 17(7), 7961-7979. https://doi.org/10.3390/molecules17077961