Antioxidant Activity of New Aramide Nanoparticles Containing Redox-Active N-phthaloyl Valine Moieties in the Hepatic Cytochrome P450 System in Male Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Aramides NanoparticlesContaining N-Phthaloyl Valine Moieties
No. | Yield (%) | Unit Formula | M.Wt | % C (Exp.) | % H (Exp.) | % N (Exp.) | ηinh a | IR (KBr) (υ cm−1) | λmax (nm) |
---|---|---|---|---|---|---|---|---|---|
9 | 88 | C27H24N4O6 | 500 | 64.79 (64.31) | 4.83 (4.42) | 11.19 (11.38) | 0.70 | 3464, 2968, 1768, 1712, 1608, 1549, 1488, 1450, 1386, 1334, 1248, 1115, 1071, 1017, 886, 686. | 265 300 |
10 | 81 | C26H23N5O6 | 501 | 62.27 (62.63) | 4.62 (4.88) | 13.97 (13.54) | 0.62 | 3448, 1768, 1712, 1608, 1554, 1488, 1450, 1387, 1333, 1245, 1115, 1071, 1016, 999, 959, 886, 868. | 265 305 |
12 | 86 | C27H23N3O7 | 501 | 64.67 (64.30) | 4.62 (4.22) | 8.38 (8.09) | 0.67 | 3423, 2966, 1769, 1713, 1656, 1605, 1548, 1494, 1451, 1385, 1354, 1335, 1255, 1174, 1157, 1117, 1077, 1016, 999, 975, 888. | 265 296 |
17 | 90 | C33H28N4O6 | 576 | 68.74 (69.01) | 4.89 (4.55) | 9.72 (9.37) | 0.61 | 3457, 2967, 1769, 1713, 1652, 1597, 1523, 1502, 1467, 1447, 1415, 1385, 1331, 1116, 1070, 887. | 269 306 |
18 | 84 | C33H28N4O7 | 592 | 66.88 (66.49) | 4.76 (4.41) | 9.45 (9.78) | 0.60 | 3452, 2967, 1769, 1714, 1655, 1602, 1539, 1499, 1467, 1447, 1408, 1385, 1335, 1232, 1169, 1117, 1071, 1014, 876, 832. | 268 292 |
19 | 88 | C34H30N4O6 | 590 | 69.14 (70.45) | 5.12 (5.53) | 9.49 (9.81) | 0.63 | 3460, 1713, 1649, 1533, 1411, 1385, 1253, 1071, 720, 531. | 268 295 |
20 | 86 | C33H28N4O8S | 640 | 61.87 (62.34) | 4.41 (4.19) | 8.75 (8.42) | 0.58 | 3468, 1770, 1714, 1674, 1593, 1529, 1447, 1394, 1320, 1252, 1148, 1106, 1071, 888, 836. | 270 305 |
2.2. Physical Properties of the Prepared Polymers
2.2.1. Solubility
2.2.2. Inherent Viscosity
2.2.3. FTIR Spectroscopy
2.2.4. Optical Properties
2.2.5. Thermal Properties
Cpd. No. | Stage | TG (°C) | % Wt loss | LOI a | T b | Eac | A (S−1) × 10−4 | ΔH* c | ΔS* c | ΔG* c |
---|---|---|---|---|---|---|---|---|---|---|
9 | I | 200–700 | 58.60 | 320 | 6.72 | 0.47 | 1.78 | −329.1 | 199.9 | |
II | Residue | 41.40 | 34.1 | 425 | 22.34 | 0.72 | 16.53 | −327.0 | 244.7 | |
525 | 86.16 | 1.40 | 79.52 | −322.3 | 336.6 | |||||
10 | I | 200–700 | 58.19 | 34.2 | 425 | 19.62 | 1.97 | 17.04 | −317.2 | 184.9 |
II | Residue | 41.81 | ||||||||
12 | I | 200–700 | 58.63 | 41.1 | 320 | 82.97 | 3.72 | 78.20 | −311.8 | 256.8 |
II | Residue | 41.37 | ||||||||
17 | I | 200–700 | 68.00 | 30.3 | 200 | 74.79 | 5.18 | 70.85 | −317.7 | 221.1 |
II | Residue | 32.00 | 320 | 182.96 | 1.49 | 178.02 | −309.0 | 361.6 | ||
425 | 49.09 | 3.11 | 43.28 | −314.9 | 263.1 | |||||
18 | I | 200–700 | 46.82 | 38.8 | 200 | 143.60 | 1.81 | 139.66 | −316.1 | 289.2 |
II | Residue | 53.18 | 425 | 90.69 | 3.53 | 84.88 | −313.7 | 303.8 | ||
19 | I | 200–700 | 40.98 | 41.1 | 200 | 52.34 | 1.44 | 48.40 | −322.3 | 200.8 |
II | Residue | 59.02 | 425 | 42.50 | 2.05 | 36.74 | −318.3 | 257.3 | ||
20 | I | 200–700 | 52.29 | 36.6 | 425 | 133.87 | 8.40 | 128.06 | −310.8 | 345.0 |
II | Residue | 47.71 |
2.3. Biochemical Findings
3. Experimental
3.1. Materials
3.2. Measurements
3.3. Synthesis of 2-Phthalimidyl-3-methyl Butyric Acid Chloride (4) [19]
3.4. Synthesis of 5-(2-Phthalimidyl-3-methyl butanoylamino)isophthaloyl Chloride (6)
3.5. Polymer Particles Synthesis (General Method)
3.6. Biological Studies
3.6.1. Animals and Treatments
3.6.2. Experimental Design
3.6.3. Tissue Preparations and Assays
3.6.3.1. Preparation of Liver Microsomes
3.6.3.2. Protein Determination
3.6.4. Enzyme Assays
3.6.5. Statistical Analyses
3.6.6. Clinical Findings
4. Conclusions
- Sample Availability: Samples of the prepared polymers 9, 10, 12, 17–20 are available from authors.
References
- Malhi, H.; Gores, G. Cellular and molecular mechanisms of liver injury. Gastroenterology 2008, 134, 1641–1654. [Google Scholar] [CrossRef]
- Tacke, F.; Luedde, T.; Trautwein, C. Inflammatory pathways in liver homeostasis and liver injury. Clin. Rev. Allergy Immunol. 2009, 36, 4–12. [Google Scholar] [CrossRef]
- Johnston, D.E.; Kroening, C. Mechanism of early carbon tetrachloride toxicity in cultured rat hepatocytes. Pharmacol. Toxicol. 1998, 83, 231–239. [Google Scholar] [CrossRef]
- Rechnagel, R.O.; Glende, E.A.; Dolak, J.A.; Waller, R.L. Mechanisms of carbon tetrachloride toxicity. J. Pharmacol. Exp. Ther. 1989, 43, 139–154. [Google Scholar] [CrossRef]
- Kumar, G.; Banu, G.S.; Pandian, M.R. Evaluation of the antioxidant activity of Trianthema portulacastrum L. Ind. J. Pharmacol. 2005, 37, 331–333. [Google Scholar] [CrossRef]
- Khan, M.R.; Ahmed, D. Protective effects of Digera muricata (L.) Mart. On testis against oxidative stress of carbon tetrachloride in rat. Food Chem. Toxicol. 2009, 47, 1393–1399. [Google Scholar] [CrossRef]
- Slater, T.F. Free radical mechanisms in tissue injury. Biochem. J. 1984, 222, 1–15. [Google Scholar]
- Halliwell, B.; Gutteridge, J. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984, 219, 1–14. [Google Scholar]
- Mohutsky, M.A.; Romeike, A.; Meador, V.; Lee, W.M.; Fowler, J.; Francke-Carroll, S. Hepatic Drug-Metabolizing Enzyme Induction and Implications for Preclinical and Clinical Risk Assessment. Toxicol. Pathol. 2010, 38, 799–809. [Google Scholar] [CrossRef]
- Khan, R.A.; Khan, M.R.; Sahreen, S. Evaluation of Launaea procumbens use in renal disorders: aratmodel. J. ethnopharmacol. 2010, 128, 452–461. [Google Scholar] [CrossRef]
- Afolayan, A.J.; Jimoh, F.O. Nutritional quality of some wild leafy vegetables in South Africa. Int. J. Food Sci. Nutr. 2008, 60, 424–431. [Google Scholar] [CrossRef]
- Sahreen, S.; Khan, M.R.; Khan, R.A. Evaluation of antioxidant activities of various solvent extracts of Carissa opaca fruits. Food Chem. 2010, 122, 1205–1211. [Google Scholar] [CrossRef]
- Cassidy, P.E. Thermally Stable Polymers: Syntheses and Properties; Marcel Dekker: New York, NY, USA, 1980; p. 179. [Google Scholar]
- Preston, J. Aromatic Polyamides. In Encyclopedia of Polymer Science and Engineering; Mark, H.F., Bikales, N.M., Overberger, C.C., Menges, G., Eds.; Wiley-Interscience: New York, NY, USA, 1989; Volume 11, p. 381. [Google Scholar]
- Mallakour, S.; Kowsari, E. Synthesis and characterization of new optically active poly(amide-imide)s containing epiclon and L-methionine moieties in the main chain. Polym. Adv. Technol. 2005, 16, 732–737. [Google Scholar] [CrossRef]
- Liaw, D.J.; Liaw, B.Y. Synthesis and characterization of new polyamide imides containing pendent adamantyl groups. Polymer 2001, 42, 839–845. [Google Scholar] [CrossRef]
- Nakata, S.; Brisson, J.J. Preparation of aromatic copolyamides containing regularly placed 1,6-hexamethylenediamine units. J. Polym. Sci. A Polym. Chem. 1997, 35, 2379–2386. [Google Scholar] [CrossRef]
- Pal, R.R.; Patil, P.S.; Salunkhe, M.M.; Maldar, N.M.; Wadgaonkar, P.P. Synthesis, characterization and constitutional isomerism study of new aromatic polyamides containing pendant groups based on asymmetrically substituted meta-phenylene diamines. Eur. Polym. J. 2009, 45, 953–959. [Google Scholar] [CrossRef]
- Liaw, D.J.; Hsu, P.N.; Liaw, B.Y. Synthesis and characterization of novel polyamide-imides containing noncoplanar 2,2'-dimethyl-4,4'-biphenylene unit. J. Polym. Sci. A Polym. Chem. 2001, 39, 63–70. [Google Scholar]
- Hsiao, S.H.; Chang, Y.H. New soluble aromatic polyamides containing ether linkages and laterally attached p-terphenyls. Eur. Polym. J. 2004, 40, 1749–1757. [Google Scholar] [CrossRef]
- Ayala, V.; Maya, E.M.; Garcia, J.M.; de la Campa, J.G.; Lozano, A.E.; de Abajo, J. Synthesis, characterization, and water sorption properties of new aromatic polyamides containing benzimidazole and ethylene oxide moieties. J. Polym. Sci. A Polym. Chem. 2005, 43, 112–121. [Google Scholar] [CrossRef]
- Hsiao, S.H.; Yang, C.P.; Chen, C.W.; Liou, G.S. Synthesis and properties of novel poly(amide-imide)s containing pendent diphenylamino groups. Eur. Polym. J. 2005, 41, 511–517. [Google Scholar] [CrossRef]
- Sava, I.; Bruma, M. Aromatic polyamides containing pendent acetoxybenzamide groups. Macromol. Symp. 2006, 239, 36–42. [Google Scholar] [CrossRef]
- Donnici, C.L.; Filho, D.H.M.; Moreira, L.L.C.; dos Reis, G.T.; Cordeiro, E.S.; de Oliveira, I.F.M.; Carvalhoa, S.; Paniagob, E.B. Synthesis of the novel 4,4'- and 6,6'-dihydroxamic-2,2'-bipyridines and improved routes to 4,4'- and 6,6'-substituted 2,2'-bipyridines and mono-Noxide-2,2'-bipyridine. J. Braz. Chem. Soc. 1998, 9, 455–460. [Google Scholar]
- Hassan, H.H.A.M.; Elhusseiny, A.F.; Sweyllam, A.M. Polyamides nanoparticles containing flexible linkages and their copper complexes with novel dielectric properties: Structure-property relationship. J. Mol. Str. 2011, 1001, 89–103. [Google Scholar]
- Hassan, H.H.A.M.; Elhusseiny, A.F.; Sweyllam, A.M. Synthesis and properties of narrow-sized spherical aramides nanoparticles containing pyridine and their copper (II) complexes. J. Macromol. Sci. Part A 2011, 48, 73–89. [Google Scholar]
- Hassan, H.H.A.M.; Elhusseiny, A.F.; Sweyllam, A.M. Synthesis of novel semiconducting aromatic polyesteramids containing pyridine: Characterization of nanometer-sized rod-like analogues and their copper (II) complexes. J. Macromol. Sci. Part A 2010, 47, 521–533. [Google Scholar]
- Casimir, J.R.; Guichard, G.; Briand, J.P. Methyl 2-((succinimidooxy) carbonyl)benzoate (MSB): A new, efficient reagent for N phthaloylation of amino acid and peptide derivatives. J. Org. Chem. 2002, 67, 3764–3768. [Google Scholar] [CrossRef]
- In, I.; Kim, S.Y. Soluble wholly aromatic polyamides containing unsymmetrical pyridyl ether linkages. Polymer 2006, 47, 547–552. [Google Scholar] [CrossRef]
- Yang, C.P.; Chen, R.S.; Chen, C.D. Synthesis and properties of organosoluble poly(amide-imide)s with propeller-shaped 1,1,1-triphenylethane units in the main chain. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 775–787. [Google Scholar] [CrossRef]
- Hsiao, S.H.; Chen, C.W.; Liou, G.S. Novel aromatic polyamides bearing pendent diphenylamino or carbazolyl groups. J. Polym. Sci. A Polym. Chem. 2004, 42, 3302–3313. [Google Scholar] [CrossRef]
- Okamoto, Y. Chiral polymers. Prog. Polym. Sci. 2000, 25, 159–162. [Google Scholar] [CrossRef]
- Wulff, G. Main-chain chirality and optical activity in polymers consisting of C–C chains. Angew. Chem. Int. Ed.Engl. 1989, 28, 21–37. [Google Scholar] [CrossRef]
- Mallakpour, S.; Kolahdoozan, M. Synthesis and Properties of Thermally Stable and Optically Active Novel Wholly Aromatic Polyesters Containing Chiral Pendent Group. Eur. Polym. J. 2007, 43, 3344–3354. [Google Scholar] [CrossRef]
- Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nano-capsule formation by interfacial deposition following solvent displacement. Int. J. Pharm. 1989, 55, R1–R4. [Google Scholar] [CrossRef]
- Limayem, I.; Charcosset, C.; Sfar, S.; Fessi, H. Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int. J. Pharm. 2006, 325, 124–131. [Google Scholar] [CrossRef]
- Ferranti, V.; Marchais, H.; Chabenat, C.; Orecchioni, A.M.; Lafont, O. Caprolactone nanocapsules: Incorporation efficiency and in vitro release profiles. Int. J. Pharm. 1999, 193, 107–111. [Google Scholar] [CrossRef]
- Lince, F.; Marchisio, D.L.; Barresi, A.A. Strategies to control the particle size distribution of poly-caprolactone nanoparticles for pharmaceutical application. J. Colloid. Interface Sci. 2008, 322, 505–515. [Google Scholar] [CrossRef]
- Archer, E.A.; Gong, H.; Krische, M.J. Hydrogen bonding in Noncovalent Synthesis: Selectivity and Directional Organization of Molecular Strands. Tetrahedron 2001, 57, 1139–1159. [Google Scholar] [CrossRef]
- Krische, M.J.; Lehn, J.M. Utilization of persistent hydrogen-bonding motifs in the self-assembly of supramolecular architectures. Struct. Bond 2000, 94, 3–30. [Google Scholar] [CrossRef]
- Nowick, J.S. Chemical models of protein β-sheets. Acc. Chem. Res. 1999, 32, 287–296. [Google Scholar] [CrossRef]
- Zhu, J.; Parra, R.D.; Zeng, H.; Skrzypczak-Jankun, E.; Zeng, X.C.; Gong, B. New class of folding oligomers: Crescent oligoamides. J. Am. Chem. Soc. 2000, 122, 4219–4220. [Google Scholar] [CrossRef]
- Berl, V.; Huc, I.; Khoury, R.G.; Krische, M.J.; Lehn, J.M. Formation and interconversion of artificial single and double stranded helices. Nature 2000, 407, 720–723. [Google Scholar] [CrossRef]
- Van Krevelen, D.W.; Hoftyzer, P.J. Properties of Polymers; Elsevier Scientific Publishing: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Coats, A.W.; Redfern, J.P. Kinetic parameters from thermogravimetric data. Nature 1961, 201, 68–69. [Google Scholar]
- Johnson, D.W.; Gallagher, P.K. Comparison of dynamic with isothermal techniques for the study of solid sate decomposition kinetics. J. Phys. Chem. 1972, 76, 1474–1479. [Google Scholar] [CrossRef]
- Glasstone, S. Textbook of Physical Chemistry; Macmillan: Bombay, India, 1974. [Google Scholar]
- Frost, A.A.; Pearson, R.G. Kinetics and Mechanisms; Wiley: New York, NY, USA, 1961. [Google Scholar]
- Yeragi, S.G.; Rana, A.M.; Koli, V.A. Effect of pesticides on protein metabolism of Mudskipper Boleophthalmus Dussumieri. J. Ecotoxicol. Env. Monitor 2003, 13, 211–214. [Google Scholar]
- Delvi, R.R. Alterations in hepatic phase I and phase II biotransformation enzymes by garlic oil in rats. Toxicol. Lett. 1992, 60, 299–305. [Google Scholar] [CrossRef]
- Sheweita, S.; Abd El-Gaber, M.; Bastawy, M. Carbon tetrachloride changes the activity of cytochrome P450 system in the liver of male rats: role of antioxidants. Toxicology 2001, 169, 83–92. [Google Scholar] [CrossRef]
- Ozturk, I.C.; Ozturk, F.; Gul, M.; Ates, B.; Cetin, A. Protective effects of ascorbic acid on hepatotoxicity and oxidative stress caused by carbon tetrachloride in the liver of Westar rats. Cell Biochem. Funct. 2009, 27, 309–315. [Google Scholar] [CrossRef]
- Bashandy, S.A.; Al Wasel, S.H. Carbon tetrachloride-induced hepatotoxicity and nephrotoxicity in rats: Protective role of vitamin C. J. Pharmacol. Toxicol. 2011, 6, 283–292. [Google Scholar] [CrossRef]
- Lowery, O.H.; Rosebrough, N.J.; Farr, A.L.; Randhll, R.J. Protein measurement with the Folin-phenol reagent. Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Omura, T.; Sato, R. The carbon monoxide binding pigment of liver microsomes. Ι. Evidence for its hematoprotein nature. J. Biol. Chem. 1964, 239, 2370–2378. [Google Scholar]
- Williams, C.H.; Kamin, H. Microsomal triphosphopyridine nucleotide-cytochrome-C reductase of liver. J. Biol. Chem. 1962, 237, 587–595. [Google Scholar]
- Habig, W.; Pabst, M.; Jakoby, W. Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar]
- Nash, T. The colorimetric estimation of formaldehyde by means of Hantzsch reactions. Biochem. J. 1953, 55, 416–421. [Google Scholar]
- Kato, R.; Gillette, J.R. Effects of starvation on NADPH-dependent enzymes in liver microsomes of male and female rats. J. Pharmacol. Exp. Ther. 1965, 150, 279–284. [Google Scholar]
- Tapel, A.L.; Zalkin, H. Inhibition of lipid peroxidation in mitochondria by vitamin E. Arch. Biochem. Biophys. 1959, 80, 333–336. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hassan, H.H.A.M.; El-Banna, S.G.; Elhusseiny, A.F.; Mansour, E.-S.M.E. Antioxidant Activity of New Aramide Nanoparticles Containing Redox-Active N-phthaloyl Valine Moieties in the Hepatic Cytochrome P450 System in Male Rats. Molecules 2012, 17, 8255-8275. https://doi.org/10.3390/molecules17078255
Hassan HHAM, El-Banna SG, Elhusseiny AF, Mansour E-SME. Antioxidant Activity of New Aramide Nanoparticles Containing Redox-Active N-phthaloyl Valine Moieties in the Hepatic Cytochrome P450 System in Male Rats. Molecules. 2012; 17(7):8255-8275. https://doi.org/10.3390/molecules17078255
Chicago/Turabian StyleHassan, Hammed H. A. M., Sabah G. El-Banna, Amel F. Elhusseiny, and El-Sayed M. E. Mansour. 2012. "Antioxidant Activity of New Aramide Nanoparticles Containing Redox-Active N-phthaloyl Valine Moieties in the Hepatic Cytochrome P450 System in Male Rats" Molecules 17, no. 7: 8255-8275. https://doi.org/10.3390/molecules17078255
APA StyleHassan, H. H. A. M., El-Banna, S. G., Elhusseiny, A. F., & Mansour, E. -S. M. E. (2012). Antioxidant Activity of New Aramide Nanoparticles Containing Redox-Active N-phthaloyl Valine Moieties in the Hepatic Cytochrome P450 System in Male Rats. Molecules, 17(7), 8255-8275. https://doi.org/10.3390/molecules17078255