Evaluation of Polyphenolic Profile and Nutritional Value of Non-Traditional Fruit Species in the Czech Republic — A Comparative Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Dry Matter and Organic Acids
Cultivars/Clones of Non-Traditional Fruit Species | Dry Matter(%) | Organic Acids(%) | ascorbic Acid (mg/100 g) | Nitrogen (mg/100 g) | Phosphorus (mg/100 g) | Potassium (mg/100 g) | Calcium (mg/100 g) | Magnesium (mg/100 g) | Natrium (mg/100 g) |
---|---|---|---|---|---|---|---|---|---|
Lonicera ‘Amur’ | 17.51 ± 0.87 | 1.46 ± 0.08 | 128.77 ± 2.78 | 402.73 ± 15.24 | 58.48 ± 1.40 | 347.71 ± 20.07 | 52.70 ± 0.80 | 14.00 ± 1.36 | 1.57 ± 0.05 |
Lonicera ‘Altaj’ | 17.20 ± 0.91 | 2.15 ± 0.10 | 133.41 ± 2.46 | 407.64 ± 19.31 | 53.66 ± 1.74 | 345.72 ± 21.45 | 41.62 ± 1.22 | 12.72 ± 1.06 | 1.89 ± 0.11 |
Lonicera ‘Sinoglaska’ | 13.84 ± 1.19 | 1.90 ± 0.16 | 135.11 ± 3.85 | 249.12 ± 17.85 | 39.99 ± 0.87 | 236.66 ± 22.23 | 40.82 ± 1.05 | 8.44 ± 0.79 | 2.90 ± 0.14 |
Lonicera ‘Fialka’ | 17.12 ± 1.10 | 2.57 ± 0.18 | 100.46 ± 2.41 | 383.49 ± 16.14 | 54.78 ± 0.97 | 333.84 ± 30.04 | 42.28 ± 1.09 | 13.18 ± 0.80 | 3.25 ± 0.24 |
Lonicera ‘Goluboje vreteno’ | 17.32 ± 1.06 | 2.12 ± 0.11 | 111.59 ± 3.95 | 507.48 ± 18.24 | 62.00 ± 1.01 | 370.65 ± 24.31 | 42.26 ± 0.99 | 14.20 ± 0.95 | 3.63 ± 0.20 |
Lonicera ‘Amfora’ | 18.11 ± 0.88 | 2.94 ± 0.12 | 142.35 ± 3.74 | 552.36 ± 19.59 | 66.64 ± 0.89 | 421.96 ± 27.88 | 50.52 ± 1.79 | 15.39 ± 0.98 | 4.34 ± 0.21 |
L-KL-2 | 15.06 ± 1.11 | 1.58 ± 0.21 | 172.66 ± 13.12 | 185.24 ± 14.11 | 35.84 ± 1.10 | 224.39 ± 15.65 | 40.66 ± 0.85 | 10.09 ± 0.87 | 1.65 ± 0.11 |
L-KL-6 | 15.77 ± 0.97 | 1.64 ± 0.13 | 160.71 ± 10.12 | 157.70 ± 10.56 | 39.58 ± 1.15 | 252.32 ± 17.28 | 41.79 ± 1.00 | 11.82 ± 1.17 | 2.05 ± 0.15 |
L-KL-20 | 15.69 ± 1.02 | 1.88 ± 0.17 | 186.61 ± 8.7 | 243.19 ± 12.87 | 45.19 ± 1.17 | 252.61 ± 20.16 | 48.01 ± 1.09 | 12.55 ± 1.13 | 1.88 ± 0.08 |
L-KL-21 | 16.43 ± 1.12 | 1.90 ± 0.12 | 67.66 ± 2.54 | 243.16 ± 17.52 | 44.69 ± 1.21 | 254.67 ± 24.70 | 43.37 ± 0.90 | 12.65 ± 1.00 | 5.58 ± 0.21 |
L-KL-35 | 16.24 ± 0.84 | 1.87 ± 0.18 | 170.55 ± 9.4 | 215.99 ± 19.47 | 41.09 ± 1.50 | 250.09 ± 19.17 | 47.74 ± 1.01 | 11.85 ± 0.82 | 3.57 ± 0.22 |
Morus nigra-‘Jugoslavska’ | 14.60 ± 0.82 | 0.99 ± 0.09 | 40.46 ± 3.12 | 151.84 ± 16.45 | 20.00 ± 1.02 | 34.16 ± 3.18 | 14.16 ± 0.79 | 6.13 ± 0.75 | 1.46 ± 0.17 |
‘Josta’ | 23.18 ± 1.05 | 3.41 ± 0.20 | 96.80 ± 2.17 | 252.66 ± 18.96 | 56.33 ± 2.07 | 324.52 ± 16.10 | 89.01 ± 0.85 | 16.92 ± 0.90 | 2.08 ± 0.19 |
Prunus tomentosa | 15.21 ± 1.01 | 2.56 ± 0.18 | 123.33 ± 3.65 | 147.54 ± 10.20 | 23.12 ± 1.19 | 159.71 ± 17.03 | 24.79 ± 1.05 | 6.54 ± 0.77 | 1.52 ± 0.09 |
Amelanchier-‘Tišnovský’ | 22.41 ± 1.18 | 1.34 ± 0.12 | 91.47 ± 2.48 | 374.25 ± 15.17 | 49.08 ± 1.84 | 356.32 ± 11.82 | 98.15 ± 3.44 | 29.80 ± 1.56 | 2.24 ± 0.15 |
Amelanchier-‘Brněnský’ | 21.38 ± 0.85 | 1.79 ± 0.16 | 110.41 ± 3.05 | 177.45 ± 18.62 | 41.26 ± 1.44 | 205.25 ± 9.12 | 67.98 ± 2.76 | 29.07 ± 1.47 | 1.71 ± 0.10 |
Amelanchier-‘Thiessen’ | 21.10 ± 1.20 | 1.40 ± 0.10 | 102.16 ± 4.65 | 244.76 ± 23.59 | 41.99 ± 2.03 | 270.08 ± 16.05 | 71.31 ± 2.49 | 22.78 ± 1.25 | 1.68 ± 0.18 |
Amelanchier-‘Smoky’ | 23.97 ± 1.06 | 1.56 ± 0.12 | 114.22 ± 3.88 | 237.30 ± 17.65 | 42.43 ± 1.47 | 294.83 ± 14.00 | 88.68 ± 3.51 | 29.00 ± 1.37 | 1.91 ± 0.20 |
2.2. Determination of Ascorbic Acid
2.3. Determination of Minerals
2.4. Determination of Polyphenolic Compounds
Genotyp | Gallic acid | Catalposide | Rutin | Resveratrol | Quercitrin | Chlorogenic acid | Quercetin |
---|---|---|---|---|---|---|---|
Amur | 22.68 ± 1.03 | 45.38 ± 1.23 | 43.31 ± 0.7 | 1.88 ± 0.05 | 12.60 ± 1.10 | 153.37 ± 10.01 | 15.76 ± 0.9 |
Altaj | 19.85 ± 0.97 | 28.59 ± 0.5 | 15.17 ± 1.37 | 1.59 ± 0.11 | N.D. | 86.62 ± 0.89 | 12.15 ± 1.03 |
Sinoglaska | 26.33 ± 0.92 | 25.42 ± 1.02 | 18.64 ± 1.01 | 1,67 ± 0.13 | N.D. | 140.54 ± 10.56 | 13.37 ± 0.75 |
Amfora | 23.28 ± 0.75 | 30.19 ± 1.47 | 35.97 ± 2.1 | N.D. | 10.057 ± 0.86 | 100.81 ± 8.02 | 14.11 ± 0.92 |
LKL-2 | 15.01 ± 1.3 | 22.87 ± 1.24 | 27.54 ± 0.75 | 1.62 ± 0.12 | 12.45 ± 1.11 | N.D. | N.D. |
LKL-20 | 28.23 ± 1.18 | N.D. | 54.73 ± 2.04 | 2,09 ± 0.05 | 6.27 ± 0.74 | 172.99 ± 11.5 | 15.42 ± 0.93 |
LKL-21 | 27.69 ± 1.20 | N.D. | 43.48 ± 3.1 | N.D. | 5.68 ± 0.2 | 130.18 ± 5.6 | 14.17 ± 1.0 |
LKL-35 | 39.45 ± 0.55 | N.D. | 87.92 ± 3.4 | N.D. | N.D. | 267.14 ± 12.7 | 8.44 ± 0.64 |
Morus Jugoslavska | 95.6 ± 2.3 | 75.94 ± 0.97 | 26.09 ± 1.17 | 1.95 ± 0.08 | 14.29 ± 1.03 | 245.43 ± 17.3 | 13.23 ± 1.01 |
Amelanchier Thiessen | 24.31 ± 1.06 | N.D. | 64.62 ± 2.76 | N.D. | 12.36 ± 1.13 | 298.13 ± 15.6 | 23.52 ± 1.52 |
Amelanchier Smoky | 116.49 ± 2.42 | 85.56 ± 3.2 | N.D. | 6.53 ± 0.22 | N.D. | N.D. | 30.68 ± 1.61 |
2.5. Statistical Evaluation of Results
- 1. Cluster: Lonicera ‘Sinoglaska’, LKL-2, LKL-6, LKL-20, LKL-35, Morus nigra ‘Jugoslavska’, Prunus tomentosa;
- 2. Cluster: ‘Josta’, Amelanchier-‘Tišnovský’, Amelanchier-‘Brněnský’, Amelanchier-‘Thiessen’, Amelanchier ‘Smoky’;
- 3. Cluster: Lonicera ‘Amur’, Lonicera ‘Altaj’, Lonicera ‘Fialka’, Lonicera ‘Goluboje vreteno’, Lonicera ‘Amfora’and LKL-21.
3. Experimental
3.1. Description of Growing Locality
3.2. Biological Material
3.2. Collection of Samples
3.3. Chemical Analyses
3.3.1. Determination of Dry Matter and Organic Acids
3.3.2. Mineral Content Assay
3.3.3. Determination of Ascorbic Acid
3.3.4. Laboratory Equipment and Instruments for Determination of HPLC Profile (HPLC-ED)
3.3.5. Statistical Evaluation
4. Conclusions
Acknowledgments
References
- Battino, M.; Beekwilder, J.; Denoyes-Rothan, B.; Laimer, M.; McDougall, G.J.; Mezzetti, B. Bioactive compounds in berries relevant to human health. Nutr. Rev. 2009, 67, 145–150. [Google Scholar] [CrossRef]
- Prior, R.L.; Cao, G.; Martin, A.; Sofic, E.; McEwen, J.O.; Brien, C.; Lischner, N.; Ehlenfeldt, M.; Kalt, W.; Krewer, G.; et al. Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food Chem. 1998, 46, 2686–2693. [Google Scholar]
- Halilova, H.; Ercisli, S. Several physic-chemical characteristics of cherry laurel (Laurocerasus officinalis) fruits. Biotechnol. Biotechnol. Equip. 2010, 24, 1970–1973. [Google Scholar] [CrossRef]
- Vesna, T.; Jasna, Č.B.; Lars, G.; Sonja, D.; Gordana, Ć. Superoxide anion radical scavenging activity of bilberry (Vaccinium myrtillus L.). J. Berry Res. 2010, 1, 13–23. [Google Scholar]
- Ercisli, S.; Orhan, E.; Ozdemir, O.; Sengul, M. The genotypic effects on the chemical composition and antioxidant activity of sea buckthorn (Hippophae rhamnoides L.) berries grown in Turkey. Sci. Hort. 2007, 115, 27–33. [Google Scholar] [CrossRef]
- Ozga, J.A.; Saeed, A.; Wismer, W.; Reinecke, D.M. Characterization of cyanidin and quercetin-derived flavonolds and other phenolics in mature saskatoon fruits (Amelanchier alnifolia Nutt.). J. Agric. Food Chem. 2007, 55, 10414–10424. [Google Scholar] [CrossRef]
- Khanal, B.P.; Grimm, E.; Knoche, M. Fruit growth, cuticle deposition, water uptake, and fruit cracking in jostaberry, gooseberry, and black currant. Sci. Hort. 2011, 128, 289–296. [Google Scholar] [CrossRef]
- Rop, O.; Reznicek, V.; Mlcek, J.; Jurikova, T.; Balik, J.; Sochor, J.; Kramarova, D. Antioxidant and radical oxygen species scavenging activities of 12 cultivars of blue honeysuckle fruit. Hort. Sci. (Prague) 2011, 38, 63–70. [Google Scholar]
- Jurikova, T.; Rop, O.; Mlcek, J.; Sochor, J.; Balla, S.; Szekeres, L.; Hegedusova, A.; Hubalek, J.; Adam, V.; Kizek, R. Phenolic Profile of Edible Honeysuckle Berries (genus Lonicera) and Their Biological Effects. Molecules 2012, 17, 61–79. [Google Scholar]
- Pokorna-Jurikova, T.; Matuskovic, J. The study of irrigation influence on nutritional value of Lonicera kamtschatica-cultivar Gerda 25 and Lonicera edulis berries under the Nitra conditions during 2001–2003. Hort. Sci. (Prague) 2007, 34, 11–16. [Google Scholar]
- Gazdik, Z.; Reznicek, V.; Adam, V.; Zitka, O.; Jurikova, T.; Krska, B.; Matuskovic, J.; Plsek, J.; Saloun, J.; Horna, A.; et al. Use of Liquid Chromatography with Electrochemical Detection for the Determination of Antioxidants in Less Common Fruits. Molecules 2008, 13, 2823–2836. [Google Scholar] [CrossRef]
- Rop, O.; Mlcek, J.; Jurikova, T.; Valsikova, M.; Sochor, J.; Reznicek, V.; Kramarova, D. Phenolic content, antioxidant capacity, radical oxygen species scavenging and lipid peroxidation inhibiting activities of extracts of five black chokeberry (Aronia melanocarpa (Michx.) Elliot) cultivars. J. Med. Plants Res. 2010, 4, 2431–2437. [Google Scholar]
- Rop, O.; Jurikova, T.; Sochor, J.; Mlcek, J.; Kramarova, D. Antioxidant capacity, scavenging radical activity and selected chemical composition of native apple cultivars from Central Europe. J. Food Qual. 2011, 34, 187–194. [Google Scholar] [CrossRef]
- Rop, O.; Sochor, J.; Jurikova, T.; Zitka, O.; Skutkova, H.; Mlcek, J.; Salas, P.; Krska, B.; Babula, P.; Adam, V.; et al. Effect of five different stages of ripening on chemical compounds in medlar (Mespilus germanica L.). Molecules 2011, 16, 74–91. [Google Scholar]
- Palikova, I.; Heinrich, J.; Bednar, P.; Marhol, P.; Kren, V.; Cvak, L.; Valentova, K.; Ruzicka, F.; Hola, V.; Kolar, M.; et al. Constituents and Antimicrobial Properties of Blue Honeysuckle: A Novel Source for Phenolic Antioxidants. J. Agric. Food Chem. 2008, 56, 11883–11889. [Google Scholar]
- Farcasanu, I.C.; Gruia, M.I.; Paraschivescu, C.; Oprea, E.; Baciu, I. Ethanol extracts of Lonicera caerulea and Sambucus nigra berries exhibit antifungal properties upon heat-stressed Saccharomyces cerevisiae cells. Rev. Chim. 2006, 57, 79–81. [Google Scholar]
- Gruia, M.I.; Oprea, E.; Gruia, I.; Negoita, V.; Farcasanu, I.C. The Antioxidant Response Induced by Lonicera caerulaea Berry Extracts in Animals Bearing Experimental Solid Tumors. Molecules 2009, 14, 893–893. [Google Scholar] [CrossRef]
- Lavola, A.; Karjalainen, R.; Julkunen-Tiitto, R. Bioactive Polyphenols in Leaves, Stems, and Berries of Saskatoon (Amelanchier alnifolia Nutt.) Cultivars. J. Agric. Food Chem. 2012, 60, 1020–1027. [Google Scholar]
- Seeram, N.P. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem. 2008, 56, 627–629. [Google Scholar] [CrossRef]
- Gazdik, Z.; Krska, B.; Adam, V.; Saloun, J.; Pokorna, T.; Reznicek, V.; Horna, A.; Kizek, R. Electrochemical Determination of the Antioxidant Potential of Some Less Common Fruit Species. Sensors 2008, 8, 7564–7570. [Google Scholar] [CrossRef]
- Rop, O.; Balik, J.; Reznicek, V.; Jurikova, T.; Skardova, P.; Salas, P.; Sochor, J.; Mlcek, J.; Kramarova, D. Chemical Characteristics of Fruits of Some Selected Quince (Cydonia oblonga Mill.) Cultivars. Czech J. Food Sci. 2011, 29, 65–73. [Google Scholar]
- Hu, C.; Kwok, B.H.L.; Kitts, D.D. Saskatoon berries (Amelanchier alnifolia Nutt.) scavenge free radicals and inhibit intracellular oxidation. Food Res. Int. 2005, 38, 1079–1085. [Google Scholar] [CrossRef]
- HasaniI-Ranjbar, S.; LarijaniI, B.; Abdoliah, M. A systematic review of Iranian medicinal plants useful in diabetes mellitus. Arch. Med. Sci. 2008, 4, 285–292. [Google Scholar]
- Zitka, O.; Sochor, J.; Rop, O.; Skalickova, S.; Sobrova, P.; Zehnalek, J.; Beklova, M.; Krska, B.; Adam, V.; Kizek, R. Comparison of various easy-to-use procedures for extraction of phenols from apricot fruits. Molecules 2011, 16, 2914–2936. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, H.J.; Choi, S.E.; Park, K.H.; Choi, H.K.; Lee, M.W. Anti-oxidative and inhibitory activities on nitric oxide (NO) and prostaglandin E-2 (COX-2) production of flavonoids from seeds of Prunus tomentosa Thunberg. Arch. Pharm. Res. 2008, 31, 424–428. [Google Scholar] [CrossRef]
- Capanoglu, E.; Boyacioglu, D.; de Vos, R.C.H.; Hall, R.D.; Beekwilder, J. Procyanidins in fruit from Sour cherry (Prunus cerasus) differ strongly in chainlength from those in Laurel cherry (Prunus lauracerasus) and Cornelian cherry (Cornus mas). J. Berry Res. 2011, 1, 137–146. [Google Scholar]
- Adam, V.; Mikelova, R.; Hubalek, J.; Hanustiak, P.; Beklova, M.; Hodek, P.; Horna, A.; Trnkova, L.; Stiborova, M.; Zeman, L.; et al. Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine. Sensors 2007, 7, 2402–2418. [Google Scholar] [CrossRef]
- Sochor, J.; Ryvolova, M.; Krystofova, O.; Salas, P.; Hubalek, J.; Adam, V.; Trnkova, L.; Havel, L.; Beklova, M.; Zehnalek, J.; et al. Fully Automated Spectrometric Protocols for Determination of Antioxidant Activity: Advantages and Disadvantages. Molecules 2010, 15, 8618–8640. [Google Scholar]
- Sochor, J.; Salas, P.; Zehnalek, J.; Krska, B.; Adam, V.; Havel, L.; Kizek, R. An assay for spectrometric determination of antioxidant activity of a biological extract. Listy Cukrovarnicke a Reparske 2010, 126, 416–417. [Google Scholar]
- Sochor, J.; Zitka, O.; Skutkova, H.; Pavlik, D.; Babula, P.; Krska, B.; Horna, A.; Adam, V.; Provaznik, I.; Kizek, R. Content of Phenolic Compounds and Antioxidant Capacity in Fruits of Apricot Genotypes. Molecules 2010, 15, 6285–6305. [Google Scholar]
- Lefèvre, I.; Ziebel, J.; Guignard, C.; Sorokin, A.; Tikhonova, O.; Dolganova, N.; Hoffmann, L.; Eyzaguirre, P.; Hausman, J.F. Evaluation and comparison of nutritional quality and bioactive compounds of berry fruits from Lonicera caerulea, Ribes L. species and Rubus idaeus grown in Russia. J. Berry Res. 2011, 1, 159–167. [Google Scholar]
- Rivera, T.M.; Quigley, M.F.; Scheerens, J.C. Performance of component species in three apple-berry polyculture systems. Hortscience 2004, 39, 1601–1606. [Google Scholar]
- Elmaci, Y.I.; Altug, T. Flavour evaluation of three black mulberry (Morus nigra) cultivars using GC/MS, chemical and sensory data. J. Sci. Food Agric. 2002, 82, 632–635. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E. Some physico-chemical characteristics of black mulberry (Morus nigra L.) genotypes from Northeast Anatolia region of Turkey. Sci. Hort. 2008, 116, 41–46. [Google Scholar] [CrossRef]
- Khalid, N.; Fawad, S.A.; Ahmed, I. Antimicrobial activity, phytochemical profile and trace minerals of black mulberry (Morus nigra L.) fresh juice. Pakistan J. Bot. 2011, 43, 91–96. [Google Scholar]
- Roberts, W.G.; Gordon, M.H. Determination of the total antioxidant activity of fruits and vegetables by a liposome assay. J. Agric. Food Chem. 2003, 51, 1486–1493. [Google Scholar] [CrossRef]
- Nishiyama, I.; Yamashita, Y.; Yamanaka, M.; Shimonashi, A.; Fukuda, T.; Oota, T. Varietal difference in vitamin C content in the fruit of kiwifruit and other Actinidia species. J. Agric. Food Chem. 2004, 52, 5472–5475. [Google Scholar]
- Paulovicsova, B.; Turianica, I.; Jurikova, T.; Baloghova, M.; Matuskovic, J. Antioxidant properties of selected less common fruit species. Lucrari stiifice Zootehnie si Biotechnologii 2009, 42, 6–9. [Google Scholar]
- Pokorna, T.; Matuskovic, J. Assesment of nutritional value of Lonicera kamtschatica and Lonicera edulis fruits using fuzzy clustering method I. Acta Horticult. Regiotect. 2007, 10, 1–4. [Google Scholar]
- Jurikova, T.; Matuskovic, J.; Gazdik, Z. Effect of irrigation on intensity of respiration and study of sugar and organic acids content in different development stages of Lonicera kamtschatica and Lonicera edulis berries. Hort. Sci. (Prague) 2009, 36, 14–20. [Google Scholar]
- Rop, O.; Jurikova, T.; Kramarova, D.; Reznicek, V.; Humpolicek, V. Antioxidant capacity and mineral composition of new Czech cultivars of Saskatoon berries (Amelanchier alnifolia Nutt.). Afr. J. Food Sci. 2010, 34, 15–19. [Google Scholar]
- Mazza, G. Chemical composition of saskatoon berries (Amelanchier alnifolia NUTT). J. Food Sci. 1982, 47, 1730–1731. [Google Scholar] [CrossRef]
- Pokorna, T.; Matuskovic, J. Assesment of nutritional value of Lonicera kamtschatica and Lonicera edulis fruits using fuzzy clustering method II. Acta Horticult. Regiotect. 2008, 11, 35–38. [Google Scholar]
- Sochor, J.; Skutkova, H.; Babula, P.; Zitka, O.; Cernei, N.; Rop, O.; Krska, B.; Adam, V.; Provaznik, I.; Kizek, R. Mathematical Evaluation of the Amino Acid and Polyphenol Content and Antioxidant Activities of Fruits from Different Apricot Cultivars. Molecules 2011, 16, 7428–7457. [Google Scholar] [CrossRef]
- Cernei, N.; Zitka, O.; Ryvolova, M.; Adam, V.; Masarik, M.; Hubalek, J.; Kizek, R. Spectrometric and Electrochemical Analysis of Sarcosine as a Potential Prostate Carcinoma Marker. Int. J. Electrochem. Sci. 2012, 7, 4286–4301. [Google Scholar]
- ST-Pierre, R.G.; Zatylny, A.M.; Tulloch, H.R. Evaluation of growth and fruit production characteristics of 15 saskatoon (Amelanchier alnifolia Nutt.) cultivars at maturity. Can. J. Plant Sci. 2005, 85, 929–932. [Google Scholar] [CrossRef]
- Wagner, E.S.; Lindley, B.; Coffin, R.D. High performance liquid chromatographic determination of ascorbic acid in urine-effect on urinary excrection profiles after oral and intravenous administration of vitamin C. J. Chromatogr. A 1979, 163, 225–229. [Google Scholar]
- Miki, N. High-performance liquid chromatographic determination of ascorbic acid in tomato products. J. Soc. Food Sci. Technol. 1981, 28, 264–268. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds isolated from non-traditional fruit species are available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Jurikova, T.; Sochor, J.; Rop, O.; Mlček, J.; Balla, Š.; Szekeres, L.; Žitný, R.; Zitka, O.; Adam, V.; Kizek, R. Evaluation of Polyphenolic Profile and Nutritional Value of Non-Traditional Fruit Species in the Czech Republic — A Comparative Study. Molecules 2012, 17, 8968-8981. https://doi.org/10.3390/molecules17088968
Jurikova T, Sochor J, Rop O, Mlček J, Balla Š, Szekeres L, Žitný R, Zitka O, Adam V, Kizek R. Evaluation of Polyphenolic Profile and Nutritional Value of Non-Traditional Fruit Species in the Czech Republic — A Comparative Study. Molecules. 2012; 17(8):8968-8981. https://doi.org/10.3390/molecules17088968
Chicago/Turabian StyleJurikova, Tunde, Jiri Sochor, Otakar Rop, Jiří Mlček, Štefan Balla, Ladislav Szekeres, Rastislav Žitný, Ondrej Zitka, Vojtech Adam, and Rene Kizek. 2012. "Evaluation of Polyphenolic Profile and Nutritional Value of Non-Traditional Fruit Species in the Czech Republic — A Comparative Study" Molecules 17, no. 8: 8968-8981. https://doi.org/10.3390/molecules17088968
APA StyleJurikova, T., Sochor, J., Rop, O., Mlček, J., Balla, Š., Szekeres, L., Žitný, R., Zitka, O., Adam, V., & Kizek, R. (2012). Evaluation of Polyphenolic Profile and Nutritional Value of Non-Traditional Fruit Species in the Czech Republic — A Comparative Study. Molecules, 17(8), 8968-8981. https://doi.org/10.3390/molecules17088968