BCL::EMAS — Enantioselective Molecular Asymmetry Descriptor for 3D-QSAR
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enatiomorphism is Determined by Asymmetry in Shape or Property Distribution
2.2. Radial Distribution Functions Separate Shape Information and Property Distribution
2.3. Expanding RDFs to ‘Signed’ Volumes that Are Sensitive to Shape Enantiomorphy
2.4. Evaluation of EMAS as a Novel Descriptor
2.4.1. Predictability Benchmarking: Cramer’s Steroids
Molecule | Observed CBG affinity (pKa) | Predicted [spatial] | Predicted [multiply properties] | Predicted [sum properties] | Predicted [no stereochemistry] |
---|---|---|---|---|---|
aldosterone | −6.28 | −7.47 | −7.31 | −7.25 | −7.22 |
androstanediol | −5.00 | −5.47 | −5.46 | −5.33 | −5.56 |
5-androstenediol | −5.00 | −5.47 | −5.43 | −5.36 | −5.75 |
4-androstenedione | −5.76 | −5.64 | −5.60 | −5.79 | −6.36 |
androsterone | −5.61 | −5.78 | −5.81 | −5.55 | −5.42 |
corticosterone | −7.88 | −7.30 | −7.37 | −7.32 | −7.34 |
cortisol | −7.88 | −7.63 | −7.58 | −7.64 | −7.33 |
cortisone | −6.89 | −7.22 | −6.83 | −7.39 | −7.07 |
dehydroepiandrosterone | −5.00 | −5.39 | −5.13 | −5.46 | −5.80 |
11-deoxycorticosterone | −7.65 | −7.48 | −7.47 | −7.50 | −6.85 |
11-deoxycortisol | −7.88 | −7.66 | −7.53 | −7.59 | −7.52 |
dihydrotestosterone | −5.92 | −5.38 | −5.70 | −5.43 | −5.96 |
estradiol | −5.00 | −5.40 | −5.36 | −5.32 | −5.21 |
estriol | −5.00 | −5.25 | −5.26 | −5.43 | −6.10 |
estrone | −5.00 | −5.30 | −5.21 | −5.54 | −5.42 |
etiocholanolone | −5.23 | −6.42 | −6.44 | −6.22 | −6.27 |
pregnenolone | −5.23 | −5.30 | −5.25 | −5.37 | −6.37 |
17a-hydroxypregnenolone | −5.00 | −5.20 | −5.28 | −5.29 | −6.65 |
progesterone | −7.38 | −7.17 | −7.27 | −7.13 | −6.46 |
17a-hydroxyprogesterone | −7.74 | −7.42 | −7.39 | −6.97 | −6.70 |
testosterone | −6.72 | −6.08 | −6.36 | −6.19 | −5.94 |
prednisolone | −7.51 | −7.61 | −7.36 | −7.65 | −7.03 |
cortisolacetat | −7.55 | −6.74 | −6.90 | −7.63 | −6.00 |
4-pregnene-3,11,20-trione | −6.78 | −6.40 | −6.83 | −6.09 | −6.46 |
epicorticosterone | −7.20 | −5.98 | −6.00 | −7.03 | −7.15 |
19-nortestosterone | −6.14 | −5.58 | −5.86 | −5.54 | −5.45 |
16a,17a-dihydroxy-progesterone | −6.25 | −7.25 | −7.04 | −7.46 | −7.36 |
16a-methylprogesterone | −7.12 | −6.69 | −6.39 | −6.78 | −6.60 |
19-norprogesterone | −6.82 | −6.01 | −6.30 | −7.25 | −6.19 |
2a-methylcortisol | −7.69 | −6.62 | −7.22 | −7.68 | −6.57 |
2a-methyl-9a-fluorocortisol | −5.80 | −7.56 | −6.97 | −6.22 | −6.74 |
0.78 | 0.86 | 0.89 | 0.65 | ||
0.60 | 0.74 | 0.78 | 0.42 |
QSAR Method | Model Creation | q2 | Reference |
---|---|---|---|
Purely Spatial RDF-like stereochemistry | Artificial Neural Network | 0.56 | |
Property weight RDF-like stereochemistry (product) | Artificial Neural Network | 0.74 | |
Property weight RDF-like stereochemistry (sum) | Artificial Neural Network | 0.78 | |
Stochastic 3D-chiral linear indices | Multiple Linear Regression | 0.87 | [13] |
Chiral Topological Indices | Stepwise Regression Analysis | 0.85 | [10] |
Chiral Graph Kernels | Support Vector Machine | 0.78 | [11] |
Chirality Correction and Topological Descriptors | K-nearest neighbor | 0.83 | [9] |
Molecular Quantum Similarity Measures | Multilinear Regression | 0.84 | [24] |
Shape and Electrostatic Similarity Matrixes | Non-linear Neural Network | 0.94 | [25] |
Comparative Molecular Moment Analysis | Partial Least Squares (PLS) | 0.83 | [25] |
Comparative Molecular Similarity Indices Analysis | PLS | 0.67 | [26] |
Comparative Molecular Field Analysis | PLS | 0.65 | [20] |
E-state Descriptors | PLS | 0.62 | [27] |
Molecular Electronegativity Distance Vector | Genetic Algorithm PLS | 0.78 | [28] |
Molecular Quantum Similarity Measures | Multilinear Regression and PLS | 0.80 | [29] |
2.4.2. vHTS Utility and Enrichment Benchmarking: PUBMED AID891
3. Experimental
3.1. Generation of Numerical Descriptors for QSAR Model Creation
3.2. Training, Monitoring, and Independent Dataset Generation
3.2.1. Cramer’s Steroids
3.2.2. PUBMED AID891
3.3. Artifical Neural Network (ANN) Architecture and Training
3.4. Forward-Feature Selection for Optimal Descriptor Set Selection
3.5. Model Evaluation
3.6. Implementation
4. Conclusions
Supplementary Materials
Acknowledgments
- Sample Availability: Datasets used for model evaluation are available from the authors.
References
- Prelog, V.; Helmchen, G. Basic Principles of the Cip-System and Proposals for a Revision. Angew. Chem. Int. Ed. 1982, 21, 567–583. [Google Scholar] [CrossRef]
- Schiffman, S.S.; Clark, T.B., 3rd; Gagnon, J. Influence of chirality of amino acids on the growth of perceived taste intensity with concentration. Physiol. Behav. 1982, 28, 457–465. [Google Scholar] [CrossRef]
- Pai, V.; Pai, N. Recent advances in chirally pure proton pump inhibitors. J. Indian Med. Assoc. 2007, 105, 469-470, 472, 474. [Google Scholar]
- Mehvar, R.; Brocks, D.R. Stereospecific pharmacokinetics and pharmacodynamics of beta-adrenergic blockers in humans. J. Pharm. Pharm. Sci. 2001, 4, 185–200. [Google Scholar]
- Gurjar, M.K. The future lies in chiral purity: A perspective. J. Indian Med. Assoc. 2007, 105, 177–178. [Google Scholar]
- FDA’s Policy Statement for the Development of New Stereoisomeric Drugs. Chirality 1992, 4, 338–340. [CrossRef]
- Beroza, P.; Suto, M.J. Designing chiral libraries for drug discovery. Drug Discov. Today 2000, 5, 364–372. [Google Scholar] [CrossRef]
- Murakami, H. From racemates to single enantiomers-Chiral synthetic drugs over the last 20 years. Top. Curr. Chem. 2007, 269, 273–299. [Google Scholar] [CrossRef]
- Golbraikh, A.; Bonchev, D.; Tropsha, A. Novel chirality descriptors derived from molecular topology. J. Chem. Inf. Comp. Sci. 2001, 41, 147–158. [Google Scholar] [CrossRef]
- Yang, C.S.; Zhong, C.L. Chirality factors and their application to QSAR studies of chiral molecules. QSAR Comb. Sci. 2005, 24, 1047–1055. [Google Scholar] [CrossRef]
- Brown, J.B.; Urata, T.; Tamura, T.; Arai, M.A.; Kawabata, T.; Akutsu, T. Compound Analysis Via Graph Kernels Incorporating Chirality. J. Bioinform. Comput. B 2010, 8, 63–81. [Google Scholar] [CrossRef]
- Lukovits, I.; Linert, W. A topological account of chirality. J. Chem. Inf. Comp. Sci. 2001, 41, 1517–1520. [Google Scholar] [CrossRef]
- Marrero-Ponce, Y.; Castillo-Garit, J.A. 3D-chiral atom, atom-type, and total non-stochastic and stochastic molecular linear indices and their applications to central chirality codification. J. Comput. Aid. Mol. Des. 2005, 19, 369–383. [Google Scholar] [CrossRef]
- Del Rio, A. Exploring enantioselective molecular recognition mechanisms with chemoinformatic techniques. J. Sep. Sci. 2009, 32, 1566–1584. [Google Scholar] [CrossRef]
- Benigni, R.; Cotta-Ramusino, M.; Gallo, G.; Giorgi, F.; Giuliani, A.; Vari, M.R. Deriving a quantitative chirality measure from molecular similarity indices. J. Med. Chem. 2000, 43, 3699–3703. [Google Scholar] [CrossRef]
- Zabrodsky, H.; Peleg, S.; Avnir, D. Continuous Symmetry Measures. J. Am. Chem. Soc. 1992, 114, 7843–7851. [Google Scholar]
- Aires-de-Sousa, J.; Gasteiger, J. New description of molecular chirality and its application to the prediction of the preferred enantiomer in stereoselective reactions. J. Chem. Inf. Comp. Sci. 2001, 41, 369–375. [Google Scholar] [CrossRef]
- Aires-de-Sousa, J.; Gasteiger, J. Prediction of enantiomeric selectivity in chromatography—Application of conformation-dependent and conformation-independent descriptors of molecular chirality. J. Mol. Graph. Model. 2002, 20, 373–388. [Google Scholar] [CrossRef]
- Aires-De-Sousa, J.; Gasteiger, J.; Gutman, I.; Vidovic, D.I. Chirality codes and molecular structure. J. Chem. Inf. Comp. Sci. 2004, 44, 831–836. [Google Scholar] [CrossRef]
- Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959–5967. [Google Scholar] [CrossRef]
- Verma, J.; Khedkar, V.M.; Coutinho, E.C. 3D-QSAR in Drug Design—A Review. Curr. Top. Med. Chem. 2010, 10, 95–115. [Google Scholar] [CrossRef]
- Hemmer, M.C.; Steinhauer, V.; Gasteiger, J. Deriving the 3D structure of organic molecules from their infrared spectra. Vib. Spectrosc. 1999, 19, 151–164. [Google Scholar] [CrossRef]
- Silverman, D.B. The thirty-one benchmark steroids revisited: Comparative molecular moment analysis (CoMMA) with principal component regression. Quant. Struct.-Act. Rel. 2000, 19, 237–246. [Google Scholar] [CrossRef]
- Robert, D.; Amat, L.; Carbo-Dorca, R. Three-dimensional quantitative structure-activity relationships from tuned molecular quantum similarity measures: Prediction of the corticosteroid-binding globulin binding affinity for a steroid family. J. Chem. Inf. Comp. Sci. 1999, 39, 333–344. [Google Scholar] [CrossRef]
- So, S.S.; Karplus, M. Three-dimensional quantitative structure-activity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations. J. Med. Chem. 1997, 40, 4347–4359. [Google Scholar] [CrossRef]
- Klebe, G.; Abraham, U.; Mietzner, T. Molecular Similarity Indexes in a Comparative-Analysis (Comsia) of Drug Molecules to Correlate and Predict Their Biological-Activity. J. Med. Chem. 1994, 37, 4130–4146. [Google Scholar] [CrossRef]
- Maw, H.H.; Hall, L.H. E-state modeling of corticosteroids binding affinity validation of model for small data set. J. Chem. Inf. Comp. Sci. 2001, 41, 1248–1254. [Google Scholar] [CrossRef]
- Liu, S.S.; Yin, C.S.; Wang, L.S. Combined MEDV-GA-MLR method for QSAR of three panels of steroids, dipeptides, and COX-2 inhibitors. J. Chem. Inf. Comp. Sci. 2002, 42, 749–756. [Google Scholar] [CrossRef]
- Besalu, E.; Girones, X.; Amat, L.; Carbo-Dorca, R. Molecular quantum similarity and the fundamentals of QSAR. Accounts Chem. Res. 2002, 35, 289–295. [Google Scholar] [CrossRef]
- Gasteiger, J.; Marsili, M. New Model for Calculating Atomic Charges in Molecules. Tetrahedron Lett. 1978, 3181–3184. [Google Scholar] [CrossRef]
- Gasteiger, J.; Marsili, M. Iterative Partial Equalization of Orbital Electronegativity—A Rapid Access to Atomic Charges. Tetrahedron 1980, 36, 3219–3228. [Google Scholar] [CrossRef]
- Guillen, M.D.; Gasteiger, J. Extension of the Method of Iterative Partial Equalization of Orbital Electronegativity to Small Ring-Systems. Tetrahedron 1983, 39, 1331–1335. [Google Scholar] [CrossRef]
- Bauerschmidt, S.; Gasteiger, J. Overcoming the limitations of a connection table description: A universal representation of chemical species. J. Chem. Inf. Comp. Sci. 1997, 37, 705–714. [Google Scholar] [CrossRef]
- Streitwieser, A. Molecular Orbital Theory for Organic Chemists; Wiley: New York, NY, USA, 1961. [Google Scholar]
- Gasteiger, J.; Saller, H. Calculation of the Charge-Distribution in Conjugated Systems by a Quantification of the Resonance Concept. Angew. Chem. Int. Ed. 1985, 24, 687–689. [Google Scholar] [CrossRef]
- Gilson, M.K.; Gilson, H.S.R.; Potter, M.J. Fast assignment of accurate partial atomic charges: An electronegativity equalization method that accounts for alternate resonance forms. J. Chem. Inf. Comp. Sci. 2003, 43, 1982–1997. [Google Scholar] [CrossRef]
- Gasteiger, J.; Hutchings, M.G. New Empirical-Models of Substituent Polarizability and Their Application to Stabilization Effects in Positively Charged Species. Tetrahedron Lett. 1983, 24, 2537–2540. [Google Scholar] [CrossRef]
- Gasteiger, J.; Hutchings, M.G. Quantitative Models of Gas-Phase Proton-Transfer Reactions Involving Alcohols, Ethers, and Their Thio Analogs—Correlation Analyses Based on Residual Electronegativity and Effective Polarizability. J. Am. Chem. Soc. 1984, 106, 6489–6495. [Google Scholar] [CrossRef]
- Miller, K.J. Additivity Methods in Molecular Polarizability. J. Am. Chem. Soc. 1990, 112, 8533–8542. [Google Scholar] [CrossRef]
- Mueller, R.; Rodriguez, A.L.; Dawson, E.S.; Butkiewicz, M.; Nguyen, T.T.; Oleszkiewicz, S.; Bleckmann, A.; Weaver, C.D.; Lindsley, C.W.; Conn, P.J.; et al. Identification of Metabotropic Glutamate Receptor Subtype 5 Potentiators Using Virtual High-Throughput Screening. ACS Chem. Neurosci. 2010, 1, 288–305. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sliwoski, G.; Lowe, E.W., Jr.; Butkiewicz, M.; Meiler, J. BCL::EMAS — Enantioselective Molecular Asymmetry Descriptor for 3D-QSAR. Molecules 2012, 17, 9971-9989. https://doi.org/10.3390/molecules17089971
Sliwoski G, Lowe EW Jr., Butkiewicz M, Meiler J. BCL::EMAS — Enantioselective Molecular Asymmetry Descriptor for 3D-QSAR. Molecules. 2012; 17(8):9971-9989. https://doi.org/10.3390/molecules17089971
Chicago/Turabian StyleSliwoski, Gregory, Edward W. Lowe, Jr., Mariusz Butkiewicz, and Jens Meiler. 2012. "BCL::EMAS — Enantioselective Molecular Asymmetry Descriptor for 3D-QSAR" Molecules 17, no. 8: 9971-9989. https://doi.org/10.3390/molecules17089971
APA StyleSliwoski, G., Lowe, E. W., Jr., Butkiewicz, M., & Meiler, J. (2012). BCL::EMAS — Enantioselective Molecular Asymmetry Descriptor for 3D-QSAR. Molecules, 17(8), 9971-9989. https://doi.org/10.3390/molecules17089971