Response Surface Methodology Optimization of Fermentation Conditions for Rapid and Efficient Accumulation of Macrolactin A by Marine Bacillus amyloliquefaciens ESB-2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Culture Conditions by Plackett-Burman Design (PBD)
Variable | Code | Low level (−) | High level (+) | Coefficient | t-value | p-value |
---|---|---|---|---|---|---|
Intercept | 11.696 | 46.10 | 0.000 | |||
Peptone (g/L) | x1 | 5 | 10 | 1.328 | 5.17 | 0.014 |
Yeast extract (g/L) | x2 | 1 | 2 | −0.525 | −2.05 | 0.133 |
Beer extract (g/L) | x3 | 0 | 1 | −0.872 | −3.05 | 0.056 |
Glucose (g/L) | x4 | 0 | 10 | 0.592 | 2.31 | 0.104 |
FePO4 (g/L) | x5 | 0.01 | 0.02 | −0.157 | −0.61 | 0.584 |
Medium volume (g/L) | x6 | 40% | 60% | 3.068 | 11.95 | 0.001 |
Temperature (°C) | x7 | 30 | 35 | −2.272 | −8.85 | 0.003 |
Initial pH value | x8 | 6 | 7 | −0.148 | −0.57 | 0.606 |
Run | Variable Level | Macrolactin A (mg/L) | |||||||
---|---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | ||
1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | 17.81 |
2 | −1 | 1 | 1 | 1 | −1 | 1 | 1 | −1 | 10.47 |
3 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | 7.35 |
4 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | 11.13 |
5 | 1 | −1 | 1 | 1 | −1 | 1 | −1 | −1 | 19.29 |
6 | −1 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 7.79 |
7 | 1 | 1 | 1 | -1 | 1 | 1 | −1 | 1 | 16.03 |
8 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | 12.42 |
9 | 1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | 13.87 |
10 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 10.46 |
11 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | 1 | 4.56 |
12 | 1 | 1 | −1 | 1 | 1 | −1 | 1 | −1 | 9.19 |
2.2. Optimization by Response Surface Methodology
Variables | Code | Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Peptone (g/L) | x1 | 5 | 10 | 15 |
Medium volume (mL) | x6 | 40% | 60% | 80% |
Temperature (°C) | x7 | 25 | 30 | 35 |
Run | Variable Level | Macrolactin A (mg/L) | ||
---|---|---|---|---|
x1 | x6 | x7 | ||
1 | 0 | 0 | 0 | 19.08 |
2 | 0 | −1 | 1 | 6.35 |
3 | 0 | 1 | 1 | 6.69 |
4 | −1 | 1 | 0 | 11.70 |
5 | 1 | 0 | 1 | 12.56 |
6 | 0 | −1 | −1 | 6.70 |
7 | 1 | 0 | −1 | 20.42 |
8 | −1 | −1 | 0 | 9.17 |
9 | 1 | −1 | 0 | 8.40 |
10 | −1 | 0 | 1 | 7.83 |
11 | 0 | 0 | 0 | 19.19 |
12 | −1 | 0 | −1 | 14.57 |
13 | 1 | 1 | 0 | 18.21 |
14 | 0 | 0 | 0 | 19.66 |
15 | 0 | 1 | −1 | 19.26 |
Source | SS | DF | MS | F-value | p-value |
---|---|---|---|---|---|
Model | 426.621 | 9 | 47.402 | 67.52 | 0.000 |
Residual | 3.510 | 5 | 0.702 | ||
Lack of Fit | 3.320 | 3 | 1.107 | 11.66 | 0.080 |
Pure Error | 0.190 | 2 | 0.095 | ||
Cor Total | 430.131 | 14 |
Variables | Parameter estimate | Standard error | t-value | p-value |
---|---|---|---|---|
Intercept | 19.3100 | 0.4837 | 39.919 | 0.000 |
x1 | 2.0400 | 0.2962 | 6.887 | 0.001 |
x6 | 3.1550 | 0.2962 | 10.651 | 0.000 |
x7 | −3.4400 | 0.2962 | −11.613 | 0.000 |
x1*x1 | −1.6725 | 0.4360 | −3.836 | 0.012 |
x6*x6 | −5.7675 | 0.4360 | −13.227 | 0.000 |
x7*x7 | −3.7925 | 0.4360 | −8.698 | 0.000 |
x1*x6 | 1.8200 | 0.4189 | 4.334 | 0.007 |
x1*x7 | −0.2800 | 0.4189 | −0.668 | 0.534 |
x6*x7 | −3.0550 | 0.4189 | −7.292 | 0.001 |
2.3. Validation of the Optimized Condition
3. Experimental
3.1. Microorganism
3.2. Culture Conditions
3.3. Analytical Method
3.4. Experimental Design and Data
4. Conclusions
Acknowledgments
- Sample Availability: Samples of the compound macrolactin A are available from the authors in case of cooperation.
References
- Tulp, M.; Bohlin, L. Unconventional natural sources for future drug discovery. Drug Discov. Today 2004, 9, 450–458. [Google Scholar] [CrossRef]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 2002, 19, 1–48. [Google Scholar]
- Haefner, B. Drugs from the deep: marine natural products as drug candidates. Drug Discov. Today 2003, 8, 536–544. [Google Scholar] [CrossRef]
- Molinski, T.F.; Dalisay, D.S.; Lievens, S.L. Drug development from marine natural products. Nat. Rev. Drug Discov. 2009, 8, 69–85. [Google Scholar]
- Blunt, J.W.; Copp, B.R.; Hu, W.P. Marine natural products. Nat. Prod. Rep. 2009, 26, 170–244. [Google Scholar]
- Blunt, J.W.; Copp, B.R.; Munro, M.H.G. Marine natural products. Nat. Prod. Rep. 2010, 27, 165–237. [Google Scholar] [CrossRef]
- Gustafson, K.; Roman, M.; Fenical, W. The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J. Am. Chem. Soc. 1989, 111, 7519–7524. [Google Scholar] [CrossRef]
- Jaruchoktaweechai, C.; Suwanborirux, K.; Tanasupawatt, S. New macrolactins from a marine Bacillus sp. Sc026. J. Nat. Prod. 2000, 63, 984–986. [Google Scholar] [CrossRef]
- Nagao, T.; Adachi, K.; Sakai, M. Novel macrolactins as antibiotic lactones from a marine bacterium. J. Antibiot. 2001, 54, 333–339. [Google Scholar] [CrossRef]
- Romero, T.M.; Jansen, R.; Sylla, M.; Lünsdorf, H.; Häussler, S.; Santosa, D.A.; Timmis, K.N.; Molinari, G.; Antimicrob, A.C. 7-O-malonyl macrolactin A, a new macrolactin antibiotic from Bacillus subtilis active against methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and a small-colony variant of Burkholderia cepacia. Antimicrob. Agents Chemother. 2006, 50, 1701–1709. [Google Scholar] [CrossRef]
- Zheng, C.J.; Lee, S.; Lee, C.H.; Kim, W.G. Macrolactins O-R, glycosylated 24-membered lactones from Bacillus sp. AH159-1. J. Nat. Prod. 2007, 70, 1632–1635. [Google Scholar] [CrossRef]
- Xue, C.; Tian, L.; Xu, M.; Deng, Z.; Lin, W. A new 24-membered lactone and a new polyene delta-lactone from the marine bacterium Bacillusmarinus. J. Antibiot. 2008, 61, 668–674. [Google Scholar] [CrossRef]
- Sohn, M.J.; Zheng, C.J.; Kim, W.G. Macrolactin S, a new antibacterial agent with FabG-inhibitory activity from Bacillus sp. AT28. J. Antibiot. 2008, 61, 687–691. [Google Scholar] [CrossRef]
- Mondol, M.A.; Kim, J.H.; Lee, H.S.; Lee, Y.J.; Shin, H.J. Macrolactin W, a new antibacterial macrolide from a marine Bacillus sp. Bioorg. Med. Chem. Lett. 2011, 21, 3832–3835. [Google Scholar] [CrossRef]
- Calam, C.T. Media for industrial fermentations. Process Biochem. 1967, 2, 19–22. [Google Scholar]
- Baş, D.; Boyaci, I.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Gao, H.; Liu, M.; Liu, J.; Dai, H.Q.; Zhou, X.L.; Liu, X.Y.; Zhuo, Y.; Zhang, W.Q.; Zhang, L.X. Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresource Technol. 2009, 100, 4012–4016. [Google Scholar] [CrossRef]
- Niladevi, K.N.; Sukumaran, R.K.; Jacob, N.; Anisha, G.S.; Prema, P. Optimization of lactase production from a novel strain Streptomyces psammoticus using response surface methodology. Microbiol. Res. 2009, 164, 105–113. [Google Scholar] [CrossRef]
- Maddox, I.S.; Richert, S.H. Use of response surface methodology for the rapid optimization of microbiological media. J. Appl. Bacteriol. 1977, 43, 197–204. [Google Scholar] [CrossRef]
- Cheynier, V.; Feinberg, M.; Chararas, C.; Ducauze, C. Application of Response Surface Methodology to Evaluation of Bioconversion Experimental Conditions. Appl. Environ. Microb. 1983, 45, 634–639. [Google Scholar]
- Zhang, C.H.; Ma, Y.J.; Yang, F.X.; Liu, W.; Zhang, Y.D. Optimization of medium composition for butyric acid production by Clostridium thermobutyricum using response surface methodology. Bioresource Technol. 2009, 100, 4284–4288. [Google Scholar] [CrossRef]
- Pujari, V.; Chandra, T.S. Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii. Process Biochem. 2000, 36, 31–37. [Google Scholar] [CrossRef]
- Liu, J.Z.; Weng, L.P.; Zhang, Q.L.; Xu, H.; Ji, L.N. Optimization of glucose oxidase production by Aspergillus niger in a benchtop bioreactor using response surface methodology. World J. Microb. Biot. 2003, 19, 317–323. [Google Scholar] [CrossRef]
- Muralidhar, R.V.; Chirumamila, R.R.; Marchant, R.; Nigam, P. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochem. Eng. J. 2001, 9, 17–23. [Google Scholar] [CrossRef]
- Yang, Q.; Han, W.J.; Zhang, W.J.; Lu, X.L.; Liu, X.Y.; Xu, Q.Z.; Jiao, B.H. Identification of A Macrolactin A Antibiotic-producing Marine Bacillus amyloliquefaciens JY-863 Strain and Optimization of Its Fermentation Conditions. Pharm. Technol. 2009, 16, 311–315. [Google Scholar]
- Garrity, G.M.; Bell, J.A.; Lilburn, T.G. Taxonomic Outline of the Prokaryotes. In Bergey’s Manual of Systematic Bacteriolog, 2nd ed; Spinger-Verlag: New York, NY, USA, 2004; Volume 2, pp. 172–178. [Google Scholar]
- Zhou, G.L.; Luo, X.S.; Tang, Y.L. Kocuria flava sp. nov. and Kocuria turfanensis sp. nov, airborne actinobacteria isolated from Xinjiang, China. Int. Syst. Evol. Microb. 2008, 58, 1304–1307. [Google Scholar] [CrossRef]
- He, S.; Wang, H.; Yan, X.; Zhu, P.; Chen, J.; Yang, R. Preparative Isolation and Purification of Macrolactin Antibiotics from Marine Bacterium Bacillus amyloliquefaciens using High-Speed Counter-Current Chromatography in Stepwise Elution Mode. J. Chromatogr. A 2012, in press. [Google Scholar]
- Plackett, R.L.; Burman, J.P. The design of optimum multifactorial experiments. Biometrika 1946, 33, 305–325. [Google Scholar] [CrossRef]
- Kalil, S.J.; Maugeri, F.; Rodrigues, M.I. Response surface analysis and stimulation as a tool for bioprocess design and optimization. Process Biochem. 2000, 35, 539–550. [Google Scholar] [CrossRef]
- Liu, G.Q.; Wang, X.L. Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Appl. Microbiol. Biotechnol. 2007, 74, 78–83. [Google Scholar] [CrossRef]
- Box, G.; Behnken, D. Some New Three Level Designs for the Study of Quantitative Factors. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Bingham, D. Comment on Factor Screening and Response Surface Exploration. Stat. Sin. 2001, 11, 580–583. [Google Scholar]
- Gilmour, S. Response Surface Designs for Experiments in Bioprocessing. Biometrics 2006, 62, 323–331. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
He, S.; Wang, H.; Wu, B.; Zhou, H.; Zhu, P.; Yang, R.; Yan, X. Response Surface Methodology Optimization of Fermentation Conditions for Rapid and Efficient Accumulation of Macrolactin A by Marine Bacillus amyloliquefaciens ESB-2. Molecules 2013, 18, 408-417. https://doi.org/10.3390/molecules18010408
He S, Wang H, Wu B, Zhou H, Zhu P, Yang R, Yan X. Response Surface Methodology Optimization of Fermentation Conditions for Rapid and Efficient Accumulation of Macrolactin A by Marine Bacillus amyloliquefaciens ESB-2. Molecules. 2013; 18(1):408-417. https://doi.org/10.3390/molecules18010408
Chicago/Turabian StyleHe, Shan, Hongqiang Wang, Bin Wu, Hui Zhou, Peng Zhu, Rui Yang, and Xiaojun Yan. 2013. "Response Surface Methodology Optimization of Fermentation Conditions for Rapid and Efficient Accumulation of Macrolactin A by Marine Bacillus amyloliquefaciens ESB-2" Molecules 18, no. 1: 408-417. https://doi.org/10.3390/molecules18010408
APA StyleHe, S., Wang, H., Wu, B., Zhou, H., Zhu, P., Yang, R., & Yan, X. (2013). Response Surface Methodology Optimization of Fermentation Conditions for Rapid and Efficient Accumulation of Macrolactin A by Marine Bacillus amyloliquefaciens ESB-2. Molecules, 18(1), 408-417. https://doi.org/10.3390/molecules18010408