Oxygen Radical Absorbance Capacity of Different Varieties of Strawberry and the Antioxidant Stability in Storage
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oxygen radical Absorbance Capacity (ORAC) of Different Varieties of Strawberries in Different Developmental Stages
ORAC value (mmol Trolox/100 g fresh weight) | ||||||
---|---|---|---|---|---|---|
Variety name | Used part | December | January | February | March | April |
Toyonoka | fruit of green unripe stage | 1.401 ± 0.112 b | 1.245 ± 0.051 a | 3.008 ± 0.232 c | 1.579 ± 0.013 ab | 1.308 ± 0.083 ab |
fruit of half red stage | 1.309 ± 0.079 b | 1.234 ± 0.074 a | 1.729 ± 0.027 b | 1.347 ± 0.139 ab | 1.027 ± 0.045 a | |
fruit of red ripe stage | 1.257 ± 0.128 b | 1.433 ± 0.033 a | 1.916 ± 0.064 b | 0.795 ± 0.067 a | 0.909 ± 0.019 a | |
calyx | 4.959 ± 0.240 g | 8.022 ± 0.239 c | 10.89 ± 0.542 e | 12.68 ± 0.771 e | 8.248 ± 0.242 g | |
Benihope | fruit of green unripe stage | 2.780 ± 0.081 e | 2.118 ± 0.199 a | 2.700 ± 0.057 c | 3.101 ± 0.279 c | 2.913 ± 0.284 c |
fruit of half red stage | 1.176 ± 0.170 b | 1.187 ± 0.150 a | 2.661 ± 0.335 c | 1.930 ± 0.097 b | 3.116 ± 0.215 c | |
fruit of red ripe stage | 0.839 ± 0.087 a | 0.937 ± 0.096 a | 1.543 ± 0.121 ab | 1.169 ± 0.032 ab | 2.343 ± 0.192 bc | |
calyx | 11.34 ± 0.310 h | 15.37 ± 1.339 e | 28.20 ± 1.101 i | 17.87 ± 0.942 h | 21.61 ± 2.091 i | |
Ningfeng | fruit of green unripe stage | 1.565 ± 0.057 b | 1.229 ± 0.128 a | 2.370 ± 0.336 bc | 1.784 ± 0.138 b | 4.654 ± 0.452 d |
fruit of half red stage | n.d. | n.d. | 1.722 ± 0.139 b | 0.902 ± 0.055 a | 3.197 ± 0.119 c | |
fruit of red ripe stage | n.d. | n.d. | 2.069 ± 0.108 bc | 1.186 ± 0.147 ab | 2.685 ± 0.157 c | |
calyx | 4.066 ± 0.141 f | 11.67 ± 0.727 d | 15.46 ± 1.120 g | 15.59 ± 1.105 g | 16.68 ± 0.661 h | |
Ningyu | fruit of green unripe stage | 1.738 ± 0.114 b | 3.392 ± 0.395 b | 2.706 ± 0.175 c | 3.623 ± 0.159 c | 3.288 ± 0.037 c |
fruit of half red stage | 1.615 ± 0.159 b | 2.160 ± 0.184 ab | 2.049 ± 0.104 bc | 1.270 ± 0.130 ab | 2.282 ± 0.092 bc | |
fruit of red ripe stage | 1.802 ± 0.049 c | 1.404 ± 0.104 a | 1.706 ± 0.069 b | 1.219 ± 0.069 ab | 2.830 ± 0.063 c | |
calyx | 3.420 ± 0.296 f | 15.40 ± 2.095 e | 22.64 ± 0.804 h | 18.78 ± 1.623 i | 5.592 ± 0.431 e | |
Sweet Charlie | fruit of green unripe stage | 2.321 ± 0.081 d | 2.451 ± 0.199 a | 1.608 ± 0.109 b | 3.437 ± 0.078 c | 1.815 ± 0.125 b |
fruit of half red stage | 1.629 ± 0.142 b | 1.738 ± 0.227 a | 1.458 ± 0.122 b | 1.377 ± 0.097 ab | 2.128 ± 0.099 bc | |
fruit of red ripe stage | 1.303 ± 0.149 b | 1.408 ± 0.089 a | 1.286 ± 0.173 ab | 1.892 ± 0.175 b | 1.357 ± 0.131 ab | |
calyx | 5.242 ± 0.311 g | 11.78 ± 1.594 d | 7.238 ± 0.195 d | 11.29 ± 0.919 d | 6.697 ± 0.232 f | |
Zijin 4 | fruit of green unripe stage | 2.404 ± 0.098 d | 2.041 ± 0.192 a | 2.777 ± 0.080 c | 1.503 ± 0.039 ab | 2.547 ± 0.186 bc |
fruit of half red stage | 1.307 ± 0.070 b | 1.697 ± 0.837 a | 1.538 ± 0.101 ab | 0.968 ± 0.036 a | 2.682 ± 0.144 c | |
fruit of red ripe stage | 1.250 ± 0.080 b | 1.279 ± 0.168 a | 0.872 ± 0.105 a | 0.901 ± 0.095 a | 1.712 ± 0.212 ab | |
calyx | 4.980 ± 0.378 g | 9.759 ± 0.444 c | 13.57 ± 0.721 f | 13.91 ± 0.305 f | 7.352 ± 0.635 f | |
LSD | 0.847 | 1.7319 | 1.3179 | 1.4422 | 1.4156 |
2.2. Primary Identification of Phenolic Constituents
Sample | TPC (mg gallic acid/g) | ||||||
---|---|---|---|---|---|---|---|
TO | BE | NF | NY | SC | ZJ | Mean | |
Fruits | 1.97 ± 0.19 | 2.59 ± 0.14 | 2.89 ± 0.14 | 3.77 ± 0.20 | 2.46 ± 0.13 | 2.28 ± 0.06 | 2.66 ± 0.60 |
Calyces *** | 10.62 ± 0.31 | 19.63 ± 0.34 | 15.64 ± 0.12 | 16.23 ± 0.14 | 11.23 ± 0.17 | 14.83 ± 0.16 | 14.7 ± 3.16 |
2.3. Effect of Storage on the Antioxidant Properties
3. Experimental
3.1. Plant Materials
3.2. Chemicals and Reagents
3.3. Sample Preparation
3.4. Determination of Total Phenolic Content
3.5. Phenolic Composition by Reversed Phase-High Performance Liquid Chromatography (RP-HPLC)
3.6. Radical Scavenging Activity by ORAC Assay
3.7. Effect of Storage on the Antioxidant Properties
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
- Samples Availability: Samples of the fruits, pomace and leaves of rabbiteye blueberry are available from the authors.
References
- Li, T.S.C. Vegetables and Fruits: Nutritional and Therapeutic Values; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Huang, W.Y.; Cai, Y.Z.; Zhang, Y.B. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr. Cancer 2010, 62, 1–20. [Google Scholar]
- Ding, M.; Feng, R.; Wang, S.Y.; Bowman, L.; Lu, Y.; Qian, Y.; Castranova, V.; Jiang, B.H.; Shi, X. Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. J. Biol. Chem. 2006, 281, 17359–17368. [Google Scholar]
- Tulipani, S.; Mezzetti, B.; Capocasa, F.; Bompadre, S.; Beekwilder, J.; de Vos, C.H.R.; Capanoglu, E.; Bovy, A.; Battino, M. Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. J. Agric. Food Chem. 2008, 56, 696–704. [Google Scholar] [CrossRef]
- Oszmiajski, J.; Wojdyio, A. Comparative study of phenolic content and antioxidant activity of strawberry puree, clear, and cloudy juices. Eur. Food Res. Technol. 2009, 228, 623–631. [Google Scholar] [CrossRef]
- Wang, S.W.; Millner, P. Effect of different cultural systems on antioxidant capacity, phenolic content, and fruit quality of strawberries (Fragaria x aranassa Duch.). J. Agric. Food Chem. 2009, 57, 9651–9657. [Google Scholar]
- Liu, R.H. Health benefits of fruits and vegetables are from additive and synergistic combination of phytochemicals. Am. J. Clin. Nutr. 2003, 78, 517–520. [Google Scholar]
- Heinonen, I.M.; Meyer, A.S.; Frankel, E.N. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. J. Agric. Food Chem. 1998, 46, 4107–4112. [Google Scholar] [CrossRef]
- Hannum, S.M. Potential impact of strawberries on human health: a review of the science. Crit. Rev. Food Sci. Nutr. 2004, 44, 1–17. [Google Scholar] [CrossRef]
- Singh, S.; Singh, R.P. In vitro methods of assay of antioxidants: An overview. Food Rev. Int. 2008, 24, 392–415. [Google Scholar] [CrossRef]
- Huang, W.Y.; Zhang, H.C.; Liu, W.X.; Li, C.Y. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J. Zhejiang Univ. Sci. B 2012, 13, 94–102. [Google Scholar] [CrossRef]
- Lee, J.; Seo, W.; Lim, W.; Cho, K. Phenolic contents and antioxidant activities from different tissues of Baekseohyang (Daphne kiusiana). Food. Sci. Biotechnol. 2011, 20, 695–702. [Google Scholar] [CrossRef]
- Prior, R.L.; Cao, G. In vivo total antioxidant capacity: Comparison of different analytical methods. Free Radic. Biol. Med. 1999, 27, 1173–1181. [Google Scholar] [CrossRef]
- Hakala, M.; Lapveteläinen, A.; Huopalahti, R.; Kallio, H.; Tahvonen, R. Effects of varieties and cultivation conditions on the composition of strawberries. J. Food Compos. Anal. 2003, 16, 67–80. [Google Scholar] [CrossRef]
- Panico, A.M.; Garufi, E.; Nitto, S.; Di Mauro, R.; Longhitano, R.C.; Magri, G.; Catalfo, A.; Serrentino, M.E.; de Guidi, G. Antioxidant activity and phenolic content of strawberry genotypes from Fragaria x ananassa. Pharm. Biol. 2009, 47, 203–208. [Google Scholar] [CrossRef]
- Carbone, F.; Preuss, A.; De Vos, R.C.H.; D'Amico, E.; Perrotta, G.; Bovy, A.G.; Martens, S.; Rosati, C. Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits. Plant Cell Environ. 2009, 32, 1117–1131. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, H.S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef]
- Li, W.; Hydanmaka, A.W.; Lowry, L.; Beta, T. Comparison of antioxidant capacity and phenolic compounds of berries, chokecherry and seabuckthorn. Cent. Eur. J. Biol. 2009, 4, 499–506. [Google Scholar] [CrossRef]
- Céspedesa, C.L.; Valdez-Moralesb, M.; Avilac, J.G.; El-Hafidid, M.; Alarcóna, J.; Paredes-Lópezb, O. Phytochemical profile and the antioxidant activity of Chilean wild black-berry fruits, Aristotelia chilensis (Mol) Stuntz (Elaeocarpaceae). Food Chem. 2010, 119, 886–895. [Google Scholar] [CrossRef]
- Kalt, W.; Forney, C.F.; Martin, A.; Prior, R.L. Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J. Agric. Food Chem. 1999, 47, 4638–4644. [Google Scholar] [CrossRef]
- Wang, C.Y. Changes in oxygen radical absorbance capacity during storage of heat-treated fresh-cut broccoli, kale and peppers. In Integrated View of Fruit and Vegetable Quality, Proceedings of the International Multidisciplinary Conference, Athens, Greece, 1–3 May, 2000; Florkowski, W.J., Prussia, S.E., Shewfelt, R.L., Eds.; Technomic Publishing Company: : Lancaster, PA, USA, 2000; pp. 165–175. [Google Scholar]
- Patthamakanokporn, O.; Puwastien, P.; Nitithamyong, A.; Sirichakwal, P.P. Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. J. Food Compos. Anal. 2008, 21, 241–248. [Google Scholar] [CrossRef]
- Brownmiller, C.; Howard, L.R.; Prior, R.L. Processing and storage effects on monomericanthocyanins, percent polymeric color, and antioxidant capacity of processed blueberry products. J. Food Sci. 2008, 73, H72–H79. [Google Scholar] [CrossRef]
- Hidalgo, A.; Brandolini, A.; Pompei, C. Kinetics of tocols degradation during the storage of einkorn (Triticum monococcum L. ssp monococcum) and breadwheat (Triticum aestivum L. ssp aestivum) flours. Food Chem. 2009, 116, 821–827. [Google Scholar]
- Baradács, E.; Csige, I.; Rajta, I. CO2 treatment and vacuum effects in proton beam micromachining of PADC. Rad. Meas. 2008, 43, 1354–1356. [Google Scholar] [CrossRef]
- Monagas, M.; Garrido, I.; Lebrón-Aguilar, R.; Bartolome, B.; Gómez-Cordovés, C. Almond (Prunus dulcis (Mill.) D.A. Webb) skins as a potential source of bioactive polyphenols. J. Agric. Food Chem. 2007, 55, 8498–8507. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, C.; Huang, W.-Y.; Wang, X.-N.; Liu, W.-X. Oxygen Radical Absorbance Capacity of Different Varieties of Strawberry and the Antioxidant Stability in Storage. Molecules 2013, 18, 1528-1539. https://doi.org/10.3390/molecules18021528
Li C, Huang W-Y, Wang X-N, Liu W-X. Oxygen Radical Absorbance Capacity of Different Varieties of Strawberry and the Antioxidant Stability in Storage. Molecules. 2013; 18(2):1528-1539. https://doi.org/10.3390/molecules18021528
Chicago/Turabian StyleLi, Chunyang, Wu-Yang Huang, Xing-Na Wang, and Wen-Xu Liu. 2013. "Oxygen Radical Absorbance Capacity of Different Varieties of Strawberry and the Antioxidant Stability in Storage" Molecules 18, no. 2: 1528-1539. https://doi.org/10.3390/molecules18021528
APA StyleLi, C., Huang, W. -Y., Wang, X. -N., & Liu, W. -X. (2013). Oxygen Radical Absorbance Capacity of Different Varieties of Strawberry and the Antioxidant Stability in Storage. Molecules, 18(2), 1528-1539. https://doi.org/10.3390/molecules18021528