Amazonian Plant Natural Products: Perspectives for Discovery of New Antimalarial Drug Leads
Abstract
:1. Introduction
2. Malaria Drug Resistance: Urging the Discovery and Development of New Drugs
3. Amazonian Plants: Sources of New Antimalarial Drugs Leads
4. Field Installed Capacity and Recent Findings from the Manaus Drug Discovery Group and Others
Plant species | Family | Common name | Collection place | Part used | Active component | IC50 (μM) | Pf strain | Source |
---|---|---|---|---|---|---|---|---|
Aspidosperma desmanthum Benth. ex Müll. Arg. | Apocynaceae | araracanga | Brazil | bark | aspidocarpine | 0.019 | K1 | [29,32] |
Aspidosperma ulei Markgr. | Apocynaceae | Brazil | root bark | uleine, olivacine | 1.2–3.7 | K1, 3D7, W2 | [33,34,35] | |
Aspidosperma vargasii A. DC. | Apocynaceae | amarelão | Brazil | bark | ellipticine | 0.073–0.81 | K1, 3D7 | [29,33] |
Carapa guianensis Aubl. | Meliaceae | andiroba | Peru | seed/flower oil | gedunins, an andirobin, mexicanolides, phragmalin-type limonoids (andirolides) | 2.5–15 | FCR-3 | [36] |
Moronobea coccinea Aubl. | Clusiaceae | manniballi | French Guiana | latex | polyprenylated acylphloroglucinols, isogarcinol,cycloxanthochymol, garcinol | 2.1–37 | FcB1 | [37] |
Picrolemma sprucei Hook. f. | Simaroubaceae | caferana | Brazil | root, stem | isobrucein B, neosergeolide | 0.002–0.008 | K1 | [29,38] |
Piper peltatum L. | Piperaceae | caapeba | Brazil | root, leaf, flowering part | 4-nerolidylcatechol | 0.67 | K1 | [29] |
Quassia amara L. | Simaroubaceae | quinquina de Cayenne | French Guiana | fresh leaf | simalikalactone D, simalikalactone E | 0.010–0.068 | FcB1, F32, W2 | [39,40] |
Rheedia acuminata (Ruiz & Pavon) Planchon & Triana | Clusiaceae | cerillo, botoncillo, caraño | French Guiana | root bark | prenylated xanthones, polyprenylated acylphloroglucinols | 3.2–15 | FcB1 | [37] |
Simaba orinocensis Kunth | Simaroubaceae | Peru | root bark | orinocinolide, simalikalactone D | 0.0063–0.018 | D6, W2 | [41] | |
Tabebuia incana A.H. Gentry | Bignoniaceae | pau d´arco | Brazil | bark | 5 & 8-hydroxy hydroxyethyl naphtho[2,3-b]furan-4,9-diones | 0.67 | FcB2 | [42,43] |
Tachia grandiflora Maguire & Weaver | Gentianaceae | caferana | Brazil | leaf | amplexine (djalonenol) | 35 | W2 | [44,45] |
Tapirira guianensis Aubl. | Anacardiaceae | piojo | French Guiana | bark | cyclic alkyl polyols | 4.7–5.4 | F32, FcB1 | [46] |
Zanthoxylum. rhoifolium Lam | Rutaceae | tachuelo | French Guiana | trunk bark | avicine hydroxide, nitidine hydroxide, fagaridine | <0.27–38 | FCB1 | [47] |
5. New Generation Antimalarials: Desirable and Essential Characteristics
6. Drug Discovery for P. falciparum: The Path to Appropriate Drug-Sensitive Assays
7. Plasmodium vivax Malaria: Neglected and Misinterpreted
8. Drug Discovery for P. vivax: The Next Step Forward
9. Hypnozoite Drug Tests: The Greatest Challenge
10. Perspectives
11. Concluding Remarks
Acknowledgments
Conflicts of Interest
References
- malERA Consultative Group on Drugs. A research agenda for malaria eradication: Drugs. PLoS Med. 2011, 8, e1000402. [CrossRef]
- White, N.J. Counter perspective: Artemisinin resistance: Facts, fears, and fables. Am. J. Trop. Med. Hyg. 2012, 87, 785. [Google Scholar] [CrossRef]
- Phyo, A.P.; Nkhoma, S.; Stepniewska, K.; Ashley, E.A.; Nair, S.; McGready, R.; ler Moo, C.; Al-Saai, S.; Dondorp, A.M.; Lwin, K.M.; et al. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 2012, 379, 1960–1966. [Google Scholar] [CrossRef]
- Milliken, W. Plants for Malaria, Plants for Fever: Medicinal Species in Latin America, A Bibliographic Survey; Royal Botanic Gardens, Kew: Richmond, VA, USA, 1997; p. 116. [Google Scholar]
- Ruiz, L.; Ruiz, L.; Maco, M.; Cobos, M.; Gutierrez-Choquevilca, A.L.; Roumy, V. Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria. J. Ethnopharmacol. 2011, 133, 917–921. [Google Scholar] [CrossRef]
- Vigneron, M.; Deparis, X.; Deharo, E.; Bourdy, G. Antimalarial remedies in French Guiana: a knowledge attitudes and practices study. J. Ethnopharmacol. 2005, 98, 351–360. [Google Scholar] [CrossRef]
- Bero, J.; Quetin-Leclercq, J. Natural products published in 2009 from plants traditionally used to treat malaria. Planta Med. 2011, 77, 631–640. [Google Scholar] [CrossRef] [Green Version]
- Deharo, E.; Ginsburg, H. Analysis of additivity and synergism in the anti-plasmodial effect of purified compounds from plant extracts. Malar. J. 2011, 10 (Suppl 1), S5. [Google Scholar] [CrossRef]
- Andrade-Neto, V.F.; Brandao, M.G.; Nogueira, F.; Rosario, V.E.; Krettli, A.U. Ampelozyziphus amazonicus Ducke (Rhamnaceae), a medicinal plant used to prevent malaria in the Amazon Region, hampers the development of Plasmodium berghei sporozoites. Int. J. Parasitol. 2008, 38, 1505–1511. [Google Scholar] [CrossRef]
- World Health Organization, Global Report on Antimalarial Drug Efficacy and Drug Resistance: 2000–2010; World Health Organization: Geneva, Switzerland, 2010; p. 115.
- Young, M.D.; Moore, D.V. Chloroquine resistance in Plasmodium falciparum. Am. J. Trop. Med. Hyg. 1961, 10, 317–320. [Google Scholar]
- Harinasuta, T.; Migasen, S.; Boonag, D. Chloroquine Resistance in Plasmodium Falciparum in Thailand; UNESCO First Regional Symposium on Scientific Knowledge of Tropical Parasites: Singapore University, Singapore, 1962. [Google Scholar]
- Peters, W. Chemotherapy and Drug Resistance in Malaria, 2nd ed.; Academic: London, UK, 1987. [Google Scholar]
- Roper, C.; Pearce, R.; Nair, S.; Sharp, B.; Nosten, F.; Anderson, T. Intercontinental spread of pyrimethamine-resistant malaria. Science 2004, 305, 1124. [Google Scholar] [CrossRef]
- Enserink, M. Combating malaria. Malaria treatment: ACT two. Science 2007, 318, 560–563. [Google Scholar] [CrossRef]
- World Health Organization; Roll Back Malaria Dept. Guidelines for the Treatment of Malaria; World Health Organization: Geneva, Switzerland, 2006; p. 253. [Google Scholar]
- Da Mata, A.A. Flora Médica Brasiliense. Valer Editora: Manaus, Brazil, 2003. [Google Scholar]
- Elisabetsky, E.; Shanley, P. Ethnopharmacology in the Brazilian Amazon. Pharmacol. Therap. 1994, 64, 201–214. [Google Scholar] [CrossRef]
- Rodrigues, E. Plants and animals utilized as medicines in the Jau National Park (JNP), Brazilian Amazon. Phytother. Res. 2006, 20, 378–391. [Google Scholar] [CrossRef]
- Santos, J.F.; Pagani, E.; Ramos, J.; Rodrigues, E. Observations on the therapeutic practices of riverine communities of the Unini River, AM, Brazil. J. Ethnopharmacol. 2012, 142, 503–515. [Google Scholar] [CrossRef]
- Suffredini, I.B.; Paciencia, M.L.; Varella, A.D.; Younes, R.N. Antibacterial activity of Brazilian Amazon plant extracts. Braz. J. Infect. Dis. 2006, 10, 400–402. [Google Scholar]
- Carneiro, A.L.; Teixeira, M.F.; Oliveira, V.M.; Fernandes, O.C.; Cauper, G.S.; Pohlit, A.M. Screening of Amazonian plants from the Adolpho Ducke forest reserve, Manaus, state of Amazonas, Brazil, for antimicrobial activity. Mem. Inst. Oswaldo Cruz 2008, 103, 31–38. [Google Scholar]
- Pohlit, A.M.; Lopes, N.P.; Gama, R.A.; Tadei, W.P.; Neto, V.F. Patent literature on mosquito repellent inventions which contain plant essential oils-A review. Planta Med. 2011, 77, 598–617. [Google Scholar] [CrossRef]
- Pohlit, A.M.; Rezende, A.R.; Lopes Baldin, E.L.; Lopes, N.P.; Neto, V.F. Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseases-A review. Planta Med. 2011, 77, 618–630. [Google Scholar] [CrossRef]
- Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.; et al. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-part I. Curr. Med. Chem. 2012, 19, 2128–2175. [Google Scholar]
- Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D'Alessandro, U. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar. J. 2011, 10, 144. [Google Scholar] [CrossRef]
- Bray, P.G.; Ward, S.A.; O'Neill, P.M. Quinolines and artemisinin: chemistry, biology and history. Curr. Top. Microbiol. Immunol. 2005, 295, 3–38. [Google Scholar] [CrossRef]
- Pohlit, A.M.; Jabor, V.A. P.; Amorim, R.C. N.; Costa e Silva, E.C.; Lopes, N.P. LC-ESI-MS Determination of Quassinoids Isobrucein B and Neosergeolide in Picrolemma sprucei Stem Infusions. J. Braz. Chem. Soc. 2009, 20, 1065–1070. [Google Scholar] [CrossRef]
- de Andrade-Neto, V.F.; Pohlit, A.M.; Pinto, A.C.; Silva, E.C.; Nogueira, K.L.; Melo, M.R.; Henrique, M.C.; Amorim, R.C.; Silva, L.F.; Costa, M.R.; et al. In vitro inhibition of plasmodium falciparum by substances isolated from Amazonian antimalarial plants. Mem. Inst. Oswaldo Cruz 2007, 102, 359–365. [Google Scholar]
- Pinto, A.C.; Chaves, F.C.; dos Santos, P.A.; Nunez, C.V.; Tadei, W.P.; Pohlit, A.M. Piper peltatum: Biomass and 4-nerolidylcatechol production. Planta Med. 2010, 76, 1473–1476. [Google Scholar] [CrossRef]
- Pinto, P.S. Estudo químico e atividade biológica de frações do extrato etanólico da raiz de Cassia spruceana Benth. (Leguminosae: Caesalpinioideae). M.Sc. Thesis, Universidade Federal do Amazonas, Manaus, Brazil, 2006. [Google Scholar]
- Henrique, M.C.; Nunomura, S.M.; Pohlit, A.M. Indole alkaloids from the bark of Aspidosperma vargasii and A. desmanthum. Quim. Nova 2010, 33, 284–287. [Google Scholar] [CrossRef]
- Rocha e Silva, L.F.; Montoia, A.; Amorim, R.C.; Melo, M.R.; Henrique, M.C.; Nunomura, S.M.; Costa, M.R.; Andrade Neto, V.F.; Costa, D.S.; Dantas, G.; et al. Comparative in vitro and in vivo antimalarial activity of the indole alkaloids ellipticine, olivacine, cryptolepine and a synthetic cryptolepine analog. Phytomed. Int. J. Phytother. Phytopharmacol. 2012, 20, 71–76. [Google Scholar] [CrossRef]
- Dos Santos Torres, Z.E.; Silveira, E.R.; Rocha, E.S.L.F.; Lima, E.S.; de Vasconcellos, M.C.; de Andrade Uchoa, D.E.; Filho, R.B.; Pohlit, A.M. Chemical Composition of Aspidosperma ulei Markgr and Antiplasmodial Activity of Selected Indole Alkaloids. Molecules 2013, 18, 6281–6297. [Google Scholar] [CrossRef]
- Oliveira, A.B.; Dolabela, M.F.; Póvoa, M.M.; Santos, C.A.M.; Varotti, F.P. Antimalarial activity of ulein and proof of its action on the Plasmodium falciparum digestive vacuole. Malar. J. 2010. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sakamoto, A.; Inoue, T.; Yamada, T.; Kikuchi, T.; Kajimoto, T.; Muraoka, O.; Sato, A.; Wataya, Y.; Kim, H.-S.; et al. Andirolides H–P from the flower of andiroba (Carapa guianensis, Meliaceae). Tetrahedron 2012, 68, 3669–3677. [Google Scholar] [CrossRef]
- Marti, G.; Eparvier, V.; Moretti, C.; Susplugas, S.; Prado, S.; Grellier, P.; Retailleau, P.; Gueritte, F.; Litaudon, M. Antiplasmodial benzophenones from the trunk latex of Moronobea coccinea (Clusiaceae). Phytochemistry 2009, 70, 75–85. [Google Scholar] [CrossRef]
- Pinto, A.C.; Silva, L.F.; Cavalcanti, B.C.; Melo, M.R.; Chaves, F.C.; Lotufo, L.V.; de Moraes, M.O.; de Andrade-Neto, V.F.; Tadei, W.P.; Pessoa, C.O.; et al. New antimalarial and cytotoxic 4-nerolidylcatechol derivatives. Eur. J. Med. Chem. 2009, 44, 2731–2735. [Google Scholar] [CrossRef]
- Bertani, S.; Houel, E.; Stien, D.; Chevolot, L.; Jullian, V.; Garavito, G.; Bourdy, G.; Deharo, E. Simalikalactone D is responsible for the antimalarial properties of an Amazonian traditional remedy made with Quassia amara L. (Simaroubaceae). J. Ethnopharmacol. 2006, 108, 155–157. [Google Scholar] [CrossRef]
- Cachet, N.; Hoakwie, F.; Bertani, S.; Bourdy, G.; Deharo, E.; Stien, D.; Houel, E.; Gornitzka, H.; Fillaux, J.; Chevalley, S.; et al. Antimalarial activity of simalikalactone E, a new quassinoid from Quassia amara L. (Simaroubaceae). Antimicrob. Agents Chemother. 2009, 53, 4393–4398. [Google Scholar] [CrossRef]
- Muhammad, I.; Bedir, E.; Khan, S.I.; Tekwani, B.L.; Khan, I.A.; Takamatsu, S.; Pelletier, J.; Walker, L.A. A new antimalarial quassinoid from Simaba orinocensis. J. Nat. Prod. 2004, 67, 772–777. [Google Scholar] [CrossRef]
- Morais, S.K.R.; Silva, S.G.; Portela, C.N.; Nunomura, S.M.; Quignard, E.L.J.; Pohlit, A.M. Bioactive dihydroxyfuranonaphthoquinones from the bark of Tabebuia incana A.H. Gentry (Bignoniaceae) and HPLC analysis of commercial pau d'arco and certified T. incana bark infusions. Acta Amaz. 2007, 37, 99–102. [Google Scholar] [CrossRef]
- Pérez, H.; Diaz, F.; Medina, J.D. Chemical investigation and in vitro antimalarial activity of Tabebuia ochracea ssp. neochrysantha. Pharm. Biol. 1997, 35, 227–235. [Google Scholar] [CrossRef]
- Rocha e Silva, L.F.; Lima, E.S.; Vasconcellos, M.C.; Aranha, E.S. P.; Costa, D.S.; Santos, E.V.M.; Silva, T.C.M.; Morais, S.K.R.; Quignard, E.L.J.; Alecrim, M.G.C.; et al. In vitro and in vivo antimalarial activity and cytotoxicity of extracts, fractions and a substance isolated from the Amazonian plant Tachia grandiflora (Gentianaceae). Mem. Inst. Oswaldo Cruz 2013, 108, 501–507. [Google Scholar]
- Pohlit, A.M.; Rocha e Silva, L.F.; Henrique, M.C.; Montoia, A.; Amorim, R.C.; Nunomura, S.M.; Andrade-Neto, V.F. Antimalarial activity of ellipticine. Phytom. Int. J. Phytother. Phytopharmacol. 2012, 19, 1049. [Google Scholar] [CrossRef]
- Roumy, V.; Fabre, N.; Portet, B.; Bourdy, G.; Acebey, L.; Vigor, C.; Valentin, A.; Moulis, C. Four anti-protozoal and anti-bacterial compounds from Tapirira guianensis. Phytochem. 2009, 70, 305–311. [Google Scholar] [CrossRef]
- Jullian, V.; Bourdy, G.; Georges, S.; Maurel, S.; Sauvain, M. Validation of use of a traditional antimalarial remedy from French Guiana, Zanthoxylum rhoifolium Lam. J. Ethnopharmacol. 2006, 106, 348–352. [Google Scholar] [CrossRef]
- Saraiva Nunomura, R.C.; Pinto, A.C.; Nunomura, S.M.; Pohlit, A.M.; Fernandes Amaral, A.C. Chemical constitutents from stems of Simaba guianensis subesp ecaudata (Cronquist). Quim. Nova 2012, 35, 2153–2158. [Google Scholar] [CrossRef]
- Montoia, A. Semi-síntese de derivados da elipticina e atividade antimalárica de isolados e infusões de Aspidosperma vargasii. M.Sc. Thesis, Universidade Federal do Amazonas, Manaus, Brazil, 2013. [Google Scholar]
- Camargo, M.R.M. Avaliação da Atividade Antimalárica e Antimicrobiana de Geissospermum argenteum e Minquartia guianensis, coletadas em Roraima. M.Sc. Thesis, Universidade Federal de Rondônia, Brazil, 2011. [Google Scholar]
- Pinto, P.S.; Rocha e Silva, L.F.; Amorim, R.C.N.; Melo, M.R.S.; Nunomura, S.M.; Pohlit, A.M.Q.N. Phenolic constituents from the roots of Cassia spruceana Benth. (Fabaceae). Quim. Nova 2013. submitted for publish.
- Cavalcanti, B.C.; da Costa, P.M.; Carvalho, A.A.; Rodrigues, F.A.; Amorim, R.C.; Silva, E.C.; Pohlit, A.M.; Costa-Lotufo, L.V.; Moraes, M.O.; Pessoa, C. Involvement of intrinsic mitochondrial pathway in neosergeolide-induced apoptosis of human HL-60 leukemia cells: the role of mitochondrial permeability transition pore and DNA damage. Pharm. Biol. 2012, 50, 980–993. [Google Scholar] [CrossRef]
- Cabral, J.A.; McChesney, J.D.; Milhous, W.K. A new antimalarial quassinoid from Simaba guianensis. J. Nat. Prod. 1993, 56, 1954–1961. [Google Scholar] [CrossRef]
- Passemar, C.; Salery, M.; Soh, P.N.; Linas, M.D.; Ahond, A.; Poupat, C.; Benoit-Vical, F. Indole and aminoimidazole moieties appear as key structural units in antiplasmodial molecules. Phytomed. Int. J. Phytother. Phytopharmacol. 2011, 18, 1118–1125. [Google Scholar] [CrossRef]
- Chong, C.R.; Sullivan, D.J., Jr. Inhibition of heme crystal growth by antimalarials and other compounds: implications for drug discovery. Biochem. Pharmacol. 2003, 66, 2201–2212. [Google Scholar] [CrossRef]
- Rocha, E.S.L.F.; Silva Pinto, A.C.; Pohlit, A.M.; Quignard, E.L.; Vieira, P.P.; Tadei, W.P.; Chaves, F.C.; Samonek, J.F.; Lima, C.A.; Costa, M.R.; et al. In vivo and in vitro antimalarial activity of 4-nerolidylcatechol. Phytother. Res. 2011, 25, 1181–1188. [Google Scholar] [CrossRef]
- Silva Lima, E.; Silva Pinto, A.C.; Nogueira, K.L.; Rocha e Silva, L.F.; Oliveira de Almeida, P.D.; Carvalho de Vasconcellos, M.; Chaves, F.C.; Tadei, W.P.; Pohlit, A.M. Stability and antioxidant activity of semi-synthetic derivatives of 4-nerolidylcatechol. Molecules 2012, 18, 178–189. [Google Scholar] [CrossRef]
- Mota, M.L.; Lobo, L.T.; Costa, J.M.; Costa, L.S.; Rocha, H.A.; Rocha e Silva, L.F.; Pohlit, A.M.; Neto, V.F. In vitro and in vivo antimalarial activity of essential oils and chemical components from three medicinal plants found in northeastern Brazil. Planta Med. 2012, 78, 658–664. [Google Scholar] [CrossRef]
- Baird, J.K. Eliminating malaria--all of them. Lancet 2010, 376, 1883–1885. [Google Scholar] [CrossRef]
- Schrader, F.C.; Barho, M.; Steiner, I.; Ortmann, R.; Schlitzer, M. The antimalarial pipeline-An update. Int. J. Med. Microbiol. 2012, 302, 165–171. [Google Scholar] [CrossRef]
- Rieckmann, K.H.; McNamara, J.V.; Frischer, H.; Stockert, T.A.; Carson, P.E.; Powell, R.D. Effects of chloroquine, quinine, and cycloguanil upon the maturation of asexual erythrocytic forms of two strains of Plasmodium falciparum in vitro. Am. J. Trop. Med. Hyg. 1968, 17, 661–671. [Google Scholar]
- Rieckmann, K.H.; Campbell, G.H.; Sax, L.J.; Mrema, J.E. Drug sensitivity of plasmodium falciparum. An in vitro microtechnique. Lancet 1978, 1, 22–23. [Google Scholar]
- Noedl, H.; Wongsrichanalai, C.; Wernsdorfer, W.H. Malaria drug-sensitivity testing: New assays, new perspectives. Trends Parasitol. 2003, 19, 175–181. [Google Scholar] [CrossRef]
- Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science 1976, 193, 673–675. [Google Scholar]
- Desjardins, R.E.; Canfield, C.J.; Haynes, J.D.; Chulay, J.D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother. 1979, 16, 710–718. [Google Scholar] [CrossRef]
- Aguiar, A.C.; Rocha, E.M.; Souza, N.B.; Franca, T.C.; Krettli, A.U. New approaches in antimalarial drug discovery and development: a review. Mem. Inst. Oswaldo Cruz 2012, 107, 831–845. [Google Scholar] [CrossRef]
- Makler, M.T.; Ries, J.M.; Williams, J.A.; Bancroft, J.E.; Piper, R.C.; Gibbins, B.L.; Hinrichs, D.J. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am. J. Trop. Med. Hyg. 1993, 48, 739–741. [Google Scholar]
- Druilhe, P.; Moreno, A.; Blanc, C.; Brasseur, P.H.; Jacquier, P. A colorimetric in vitro drug sensitivity assay for Plasmodium falciparum based on a highly sensitive double-site lactate dehydrogenase antigen-capture enzyme-linked immunosorbent assay. Am. J. Trop. Med. Hyg. 2001, 64, 233–241. [Google Scholar]
- Noedl, H.; Wernsdorfer, W.H.; Miller, R.S.; Wongsrichanalai, C. Histidine-rich protein II: a novel approach to malaria drug sensitivity testing. Antimicrob. Agents Chemother. 2002, 46, 1658–1664. [Google Scholar] [CrossRef]
- Plouffe, D.; Brinker, A.; McNamara, C.; Henson, K.; Kato, N.; Kuhen, K.; Nagle, A.; Adrian, F.; Matzen, J.T.; Anderson, P.; et al. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc. Natl. Acad. Sci. USA 2008, 105, 9059–9064. [Google Scholar] [CrossRef]
- Cervantes, S.; Stout, P.E.; Prudhomme, J.; Engel, S.; Bruton, M.; Cervantes, M.; Carter, D.; Tae-Chang, Y.; Hay, M.E.; Aalbersberg, W.; et al. High content live cell imaging for the discovery of new antimalarial marine natural products. BMC Infect. Dis. 2012, 12, 1. [Google Scholar] [CrossRef]
- van Vianen, P.H.; Thaithong, S.; Reinders, P.P.; van Engen, A.; van der Keur, M.; Tanke, H.J.; van der Kaay, H.J.; Mons, B. Automated flow cytometric analysis of drug susceptibility of malaria parasites. Am. J. Trop. Med. Hyg. 1990, 43, 602–607. [Google Scholar]
- Saito-Ito, A.; Akai, Y.; He, S.; Kimura, M.; Kawabata, M. A rapid, simple and sensitive flow cytometric system for detection of Plasmodium falciparum. Parasitol. Int. 2001, 50, 249–257. [Google Scholar] [CrossRef]
- Wilson, D.W.; Crabb, B.S.; Beeson, J.G. Development of fluorescent Plasmodium falciparum for in vitro growth inhibition assays. Malar. J. 2010, 9, 152. [Google Scholar] [CrossRef]
- Che, P.; Cui, L.; Kutsch, O.; Cui, L.; Li, Q. Validating a firefly luciferase-based high-throughput screening assay for antimalarial drug discovery. Assay Drug Dev. Technol. 2012, 10, 61–68. [Google Scholar] [CrossRef]
- Cui, L.; Miao, J.; Wang, J.; Li, Q.; Cui, L. Plasmodium falciparum: development of a transgenic line for screening antimalarials using firefly luciferase as the reporter. Exp. Parasitol. 2008, 120, 80–87. [Google Scholar] [CrossRef]
- Krettli, A.U.; Adebayo, J.O.; Krettli, L.G. Testing of natural products and synthetic molecules aiming at new antimalarials. Curr. Drug Targets 2009, 10, 261–270. [Google Scholar]
- Gething, P.W.; Elyazar, I.R.; Moyes, C.L.; Smith, D.L.; Battle, K.E.; Guerra, C.A.; Patil, A.P.; Tatem, A.J.; Howes, R.E.; Myers, M.F.; et al. A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS neglect Trop. Dis. 2012, 6, e1814. [Google Scholar] [CrossRef]
- Guerra, C.A.; Howes, R.E.; Patil, A.P.; Gething, P.W.; Van Boeckel, T.P.; Temperley, W.H.; Kabaria, C.W.; Tatem, A.J.; Manh, B.H.; Elyazar, I.R.; et al. The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl. Trop. Dis. 2010, 4, e774. [Google Scholar] [CrossRef]
- Boyd, M.F.; Stratman-Thomas, W.K.; Muench, H. The occurrence of gametocytes of Plasmodium vivax during the primary attack. Am. J. Trop. Med. Hyg. 1935, 16, 133–138. [Google Scholar]
- Feachem, R.G.; Phillips, A.A.; Hwang, J.; Cotter, C.; Wielgosz, B.; Greenwood, B.M.; Sabot, O.; Rodriguez, M.H.; Abeyasinghe, R.R.; Ghebreyesus, T.A.; et al. Shrinking the malaria map: progress and prospects. Lancet 2010, 376, 1566–78. [Google Scholar] [CrossRef]
- Rodriguez, J.C.; Uribe, G.A.; Araujo, R.M.; Narvaez, P.C.; Valencia, S.H. Epidemiology and control of malaria in Colombia. Mem. Inst. Oswaldo Cruz 2011, 106, 114–122. [Google Scholar]
- Gama, B.E.; Lacerda, M.V.; Daniel-Ribeiro, C.T.; Ferreira-da-Cruz Mde, F. Chemoresistance of Plasmodium falciparum and Plasmodium vivax parasites in Brazil: consequences on disease morbidity and control. Mem. Inst. Oswaldo Cruz 2011, 106, 159–166. [Google Scholar] [CrossRef]
- Oliveira-Ferreira, J.; Lacerda, M.V.; Brasil, P.; Ladislau, J.L.; Tauil, P.L.; Daniel-Ribeiro, C.T. Malaria in Brazil: An overview. Malar. J. 2010, 9, 115. [Google Scholar] [CrossRef]
- World Health Organization, World Malaria Report 2011; World Health Organization: Geneva, Switzerland, 2011; p. 246.
- Price, R.N.; Tjitra, E.; Guerra, C.A.; Yeung, S.; White, N.J.; Anstey, N.M. Vivax malaria: Neglected and not benign. Am. J. Trop. Med. Hyg. 2007, 77, 79–87. [Google Scholar]
- Baird, J.K. Neglect of Plasmodium vivax malaria. Trends Parasitol. 2007, 23, 533–539. [Google Scholar] [CrossRef]
- Tjitra, E.; Anstey, N.M.; Sugiarto, P.; Warikar, N.; Kenangalem, E.; Karyana, M.; Lampah, D.A.; Price, R.N. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: A prospective study in Papua, Indonesia. PLoS Med. 2008, 5, e128. [Google Scholar] [CrossRef]
- Genton, B.; D'Acremont, V.; Rare, L.; Baea, K.; Reeder, J.C.; Alpers, M.P.; Muller, I. Plasmodium vivax and mixed infections are associated with severe malaria in children: a prospective cohort study from Papua New Guinea. PLoS Med. 2008, 5, e127. [Google Scholar] [CrossRef]
- Beg, M.A.; Sani, N.; Mehraj, V.; Jafri, W.; Khan, M.A.; Malik, A.; Menezes, E.; Hussain, R.; Smego, R., Jr. Comparative features and outcomes of malaria at a tertiary care hospital in Karachi, Pakistan. Int. J. Infect. Dis. 2008, 12, 37–42. [Google Scholar] [CrossRef]
- Barcus, M.J.; Basri, H.; Picarima, H.; Manyakori, C.; Sekartuti; Elyazar, I.; Bangs, M.J.; Maguire, J.D.; Baird, J.K. Demographic risk factors for severe and fatal vivax and falciparum malaria among hospital admissions in northeastern Indonesian Papua. Am. J. Trop. Med. Hyg. 2007, 77, 984–991. [Google Scholar]
- Lampah, D.A.; Yeo, T.W.; Hardianto, S.O.; Tjitra, E.; Kenangalem, E.; Sugiarto, P.; Price, R.N.; Anstey, N.M. Coma associated with microscopy-diagnosed Plasmodium vivax: a prospective study in Papua, Indonesia. PLoS Negl. Trop. Dis. 2011, 5, e1032. [Google Scholar] [CrossRef]
- Kochar, D.K.; Das, A.; Kochar, S.K.; Saxena, V.; Sirohi, P.; Garg, S.; Kochar, A.; Khatri, M.P.; Gupta, V. Severe Plasmodium vivax malaria: a report on serial cases from Bikaner in northwestern India. Am. J. Trop. Med. Hyg. 2009, 80, 194–198. [Google Scholar]
- Kochar, D.K.; Saxena, V.; Singh, N.; Kochar, S.K.; Kumar, S.V.; Das, A. Plasmodium vivax malaria. Emerg. Infect. Dis. 2005, 11, 132–134. [Google Scholar] [CrossRef]
- Tan, L.K.; Yacoub, S.; Scott, S.; Bhagani, S.; Jacobs, M. Acute lung injury and other serious complications of Plasmodium vivax malaria. Lancet Infect. Dis. 2008, 8, 449–454. [Google Scholar] [CrossRef]
- Bassat, Q.; Alonso, P.L. Defying malaria: Fathoming severe Plasmodium vivax disease. Nat. Med. 2011, 17, 48–49. [Google Scholar] [CrossRef]
- Anstey, N.M.; Russell, B.; Yeo, T.W.; Price, R.N. The pathophysiology of vivax malaria. Trends Parasitol. 2009, 25, 220–227. [Google Scholar] [CrossRef]
- Costa, F.T.; Lopes, S.C.; Albrecht, L.; Ataide, R.; Siqueira, A.M.; Souza, R.M.; Russell, B.; Renia, L.; Marinho, C.R.; Lacerda, M.V. On the pathogenesis of Plasmodium vivax malaria: perspectives from the Brazilian field. Int. J. Parasitol. 2012, 42, 1099–1105. [Google Scholar] [CrossRef]
- Lacerda, M.V.; Fragoso, S.C.; Alecrim, M.G.; Alexandre, M.A.; Magalhaes, B.M.; Siqueira, A.M.; Ferreira, L.C.; Araujo, J.R.; Mourao, M.P.; Ferrer, M.; et al. Postmortem characterization of patients with clinical diagnosis of Plasmodium vivax malaria: to what extent does this parasite kill? Clin. Infect. Dis. 2012, 55, e67–e74. [Google Scholar] [CrossRef]
- Alexandre, M.A.; Ferreira, C.O.; Siqueira, A.M.; Magalhaes, B.L.; Mourao, M.P.; Lacerda, M.V.; Alecrim, M. Severe Plasmodium vivax malaria, Brazilian Amazon. Emerg. Infect. Dis. 2010, 16, 1611–1614. [Google Scholar] [CrossRef]
- de Lacerda, M.V.; Zackiewicz, C.; Alecrim, W.D.; Alecrim, M. The neglected Plasmodium vivax: are researchers from endemic areas really concerned about new treatment options? Rev. Soc. Bras. Med. Trop. 2007, 40, 489–490. [Google Scholar] [CrossRef]
- Price, R.N.; Douglas, N.M.; Anstey, N.M.; von Seidlein, L. Plasmodium vivax treatments: What are we looking for? Curr. Opin.Infect. Dis. 2011, 24, 578–585. [Google Scholar] [CrossRef]
- Carlton, J.M.; Sina, B.J.; Adams, J.H. Why Is Plasmodium vivax a neglected tropical disease? PLoS Negl. Trop. Dis. 2011, 5, e1160. [Google Scholar] [CrossRef]
- Rieckmann, K.H.; Davis, D.R.; Hutton, D.C. Plasmodium vivax resistance to chloroquine? Lancet 1989, 2, 1183–1184. [Google Scholar] [CrossRef]
- Harinasuta, T.; Suntharasamai, P.; Viravan, C. Chloroquine-resistant falciparum malaria in Thailand. Lancet 1965, 2, 657–660. [Google Scholar] [CrossRef]
- Sumawinata, I.W.; Bernadeta; Leksana, B.; Sutamihardja, A.; Purnomo; Subianto, B.; Sekartuti; Fryauff, D.J.; Baird, J.K. Very high risk of therapeutic failure with chloroquine for uncomplicated Plasmodium falciparum and P. vivax malaria in Indonesian Papua. Am. J. Trop. Med. Hyg. 2003, 68, 416–420. [Google Scholar]
- Baird, J.K.; Wiady, I.; Fryauff, D.J.; Sutanihardja, M.A.; Leksana, B.; Widjaya, H.; Kysdarmanto; Subianto, B. In vivo resistance to chloroquine by Plasmodium vivax and Plasmodium falciparum at Nabire, Irian Jaya, Indonesia. Am. J. Trop. Med. Hyg. 1997, 56, 627–631. [Google Scholar]
- Sutanto, I.; Suprijanto, S.; Nurhayati; Manoempil, P.; Baird, J.K. Resistance to chloroquine by Plasmodium vivax at Alor in the Lesser Sundas Archipelago in eastern Indonesia. Am. J. Trop. Med. Hyg. 2009, 81, 338–342. [Google Scholar]
- Ratcliff, A.; Siswantoro, H.; Kenangalem, E.; Wuwung, M.; Brockman, A.; Edstein, M.D.; Laihad, F.; Ebsworth, E.P.; Anstey, N.M.; Tjitra, E.; et al. Therapeutic response of multidrug-resistant Plasmodium falciparum and P. vivax to chloroquine and sulfadoxine-pyrimethamine in southern Papua, Indonesia. Trans. R.oyal Soc. Trop. Med. Hyg. 2007, 101, 351–359. [Google Scholar] [CrossRef]
- Young, M.D.; Burgess, R.W. Pyrimethamine resistance in Plasmodium vivax malaria. Bull. WorldHealth Org. 1959, 20, 27–36. [Google Scholar]
- Baird, J.K. Resistance to therapies for infection by Plasmodium vivax. Clin. Microbiol. Rev. 2009, 22, 508–534. [Google Scholar] [CrossRef]
- Russell, B.; Chalfein, F.; Prasetyorini, B.; Kenangalem, E.; Piera, K.; Suwanarusk, R.; Brockman, A.; Prayoga, P.; Sugiarto, P.; Cheng, Q.; et al. Determinants of in vitro drug susceptibility testing of Plasmodium vivax. Antimicrob. Agents Chemother. 2008, 52, 1040–1045. [Google Scholar] [CrossRef]
- Sharrock, W.W.; Suwanarusk, R.; Lek-Uthai, U.; Edstein, M.D.; Kosaisavee, V.; Travers, T.; Jaidee, A.; Sriprawat, K.; Price, R.N.; Nosten, F.; et al. Plasmodium vivax trophozoites insensitive to chloroquine. Malar. J. 2008, 7, 94. [Google Scholar] [CrossRef]
- Price, R.N.; Auburn, S.; Marfurt, J.; Cheng, Q. Phenotypic and genotypic characterisation of drug-resistant Plasmodium vivax. Trends Parasitol. 2012, 28, 522–529. [Google Scholar] [CrossRef]
- Chotivanich, K.; Udomsangpetch, R.; Chierakul, W.; Newton, P.N.; Ruangveerayuth, R.; Pukrittayakamee, S.; Looareesuwan, S.; White, N.J. In vitro efficacy of antimalarial drugs against Plasmodium vivax on the western border of Thailand. Am. J. Trop. Med. Hyg. 2004, 70, 395–397. [Google Scholar]
- Kerlin, D.H.; Boyce, K.; Marfurt, J.; Simpson, J.A.; Kenangalem, E.; Cheng, Q.; Price, R.N.; Gatton, M.L. An analytical method for assessing stage-specific drug activity in Plasmodium vivax malaria: implications for ex vivo drug susceptibility testing. PLoS Negl. Trop. Dis. 2012, 6, e1772. [Google Scholar] [CrossRef] [Green Version]
- Marfurt, J.; Chalfein, F.; Prayoga, P.; Wabiser, F.; Kenangalem, E.; Piera, K.A.; Fairlie, D.P.; Tjitra, E.; Anstey, N.M.; Andrews, K.T.; et al. Ex vivo activity of histone deacetylase inhibitors against multidrug-resistant clinical isolates of Plasmodium falciparum and P. vivax. Antimicrob. Agents Chemother. 2011, 55, 961–966. [Google Scholar] [CrossRef] [Green Version]
- Tasanor, O.; Noedl, H.; Na-Bangchang, K.; Congpuong, K.; Sirichaisinthop, J.; Wernsdorfer, W.H. An in vitro system for assessing the sensitivity of Plasmodium vivax to chloroquine. Acta Trop. 2002, 83, 49–61. [Google Scholar] [CrossRef]
- Mazier, D.; Renia, L.; Snounou, G. A pre-emptive strike against malaria's stealthy hepatic forms. Nat. Rev. Drug Discov. 2009, 8, 854–864. [Google Scholar] [CrossRef]
- Hollingdale, M.R.; Collins, W.E.; Campbell, C.C. In vitro culture of exoerythrocytic parasites of the North Korean strain of Plasmodium vivax in hepatoma cells. Am. J. Trop. Med. Hyg. 1986, 35, 275–276. [Google Scholar]
- Hollingdale, M.R.; Collins, W.E.; Campbell, C.C.; Schwartz, A.L. In vitro culture of two populations (dividing and nondividing) of exoerythrocytic parasites of Plasmodium vivax. Am. J. Trop. Med. Hyg. 1985, 34, 216–222. [Google Scholar]
- Mazier, D.; Collins, W.E.; Mellouk, S.; Procell, P.M.; Berbiguier, N.; Campbell, G.H.; Miltgen, F.; Bertolotti, R.; Langlois, P.; Gentilini, M. Plasmodium ovale: In vitro development of hepatic stages. Exp. Parasitol. 1987, 64, 393–400. [Google Scholar] [CrossRef]
- Mazier, D.; Landau, I.; Druilhe, P.; Miltgen, F.; Guguen-Guillouzo, C.; Baccam, D.; Baxter, J.; Chigot, J.P.; Gentilini, M. Cultivation of the liver forms of Plasmodium vivax in human hepatocytes. Nature 1984, 307, 367–369. [Google Scholar] [CrossRef]
- Hastings, M.D.; Porter, K.M.; Maguire, J.D.; Susanti, I.; Kania, W.; Bangs, M.J.; Sibley, C.H.; Baird, J.K. Dihydrofolate reductase mutations in Plasmodium vivax from Indonesia and therapeutic response to sulfadoxine plus pyrimethamine. J. Infect. Dis. 2004, 189, 744–750. [Google Scholar] [CrossRef]
- Krudsood, S.; Tangpukdee, N.; Wilairatana, P.; Phophak, N.; Baird, J.K.; Brittenham, G.M.; Looareesuwan, S. High-dose primaquine regimens against relapse of Plasmodium vivax malaria. Am. J. Trop. Med. Hyg. 2008, 78, 736–740. [Google Scholar]
- Ku, M.J.; Dossin, F.M.; Choi, Y.; Moraes, C.B.; Ryu, J.; Song, R.; Freitas-Junior, L.H. Quantum dots: A new tool for anti-malarial drug assays. Malar. J. 2011, 10, 118. [Google Scholar] [CrossRef]
- Karl, S.; Wong, R.P.; St Pierre, T.G.; Davis, T.M. A comparative study of a flow-cytometry-based assessment of in vitro Plasmodium falciparum drug sensitivity. Malar. J. 2009, 8, 294. [Google Scholar] [CrossRef]
- Malleret, B.; Claser, C.; Ong, A.S.; Suwanarusk, R.; Sriprawat, K.; Howland, S.W.; Russell, B.; Nosten, F.; Renia, L. A rapid and robust tri-color flow cytometry assay for monitoring malaria parasite development. Sci. Rep. 2011, 1, 118. [Google Scholar]
- Meister, S.; Plouffe, D.M.; Kuhen, K.L.; Bonamy, G.M.; Wu, T.; Barnes, S.W.; Bopp, S.E.; Borboa, R.; Bright, A.T.; Che, J.; et al. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science 2011, 334, 1372–1377. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Pohlit, A.M.; Lima, R.B.S.; Frausin, G.; Silva, L.F.R.e.; Lopes, S.C.P.; Moraes, C.B.; Cravo, P.; Lacerda, M.V.G.; Siqueira, A.M.; Freitas-Junior, L.H.; et al. Amazonian Plant Natural Products: Perspectives for Discovery of New Antimalarial Drug Leads. Molecules 2013, 18, 9219-9240. https://doi.org/10.3390/molecules18089219
Pohlit AM, Lima RBS, Frausin G, Silva LFRe, Lopes SCP, Moraes CB, Cravo P, Lacerda MVG, Siqueira AM, Freitas-Junior LH, et al. Amazonian Plant Natural Products: Perspectives for Discovery of New Antimalarial Drug Leads. Molecules. 2013; 18(8):9219-9240. https://doi.org/10.3390/molecules18089219
Chicago/Turabian StylePohlit, Adrian Martin, Renata Braga Souza Lima, Gina Frausin, Luiz Francisco Rocha e Silva, Stefanie Costa Pinto Lopes, Carolina Borsoi Moraes, Pedro Cravo, Marcus Vinícius Guimarães Lacerda, André Machado Siqueira, Lucio H. Freitas-Junior, and et al. 2013. "Amazonian Plant Natural Products: Perspectives for Discovery of New Antimalarial Drug Leads" Molecules 18, no. 8: 9219-9240. https://doi.org/10.3390/molecules18089219
APA StylePohlit, A. M., Lima, R. B. S., Frausin, G., Silva, L. F. R. e., Lopes, S. C. P., Moraes, C. B., Cravo, P., Lacerda, M. V. G., Siqueira, A. M., Freitas-Junior, L. H., & Costa, F. T. M. (2013). Amazonian Plant Natural Products: Perspectives for Discovery of New Antimalarial Drug Leads. Molecules, 18(8), 9219-9240. https://doi.org/10.3390/molecules18089219