Chemical Composition and Biological Activities of Essential Oils of Eremanthus erythropappus (DC) McLeisch (Asteraceae)
Abstract
:1. Introduction
2. Results and Discussion
Compound | Retention Index | Yield (%) | Method of identification | |||
---|---|---|---|---|---|---|
Inflorescences | Fresh leaves | Dry leaves | Branches | |||
Monoterpene hydrocarbons | 6.1 | 14.6 | 17.3 | |||
α-pinene | 936 | 0.9 | 2.0 | 3.0 | − | RI, GC-MS, ST |
β-pinene | 975 | 4.0 | 8.6 | 9.1 | − | RI, GC-MS, ST |
myrcene | 987 | 1.0 | 3.5 | 4.1 | − | RI, GC-MS, ST |
α-terpinene | 1018 | − | − | 0.2 | − | RI, GC-MS, ST |
β-phellandrene | 1031 | − | 0.5 | 0.6 | − | RI, GC-MS, ST |
limonene | 1033 | 0.2 | − | − | − | RI, GC-MS, ST |
β-ocimene | 1040 | − | − | 0.3 | − | RI, GC-MS |
Oxygenated monoterpenes | 0.8 | 0.9 | 1.3 | |||
linalool | 1096 | 0.3 | 0.3 | 0.7 | − | RI, GC-MS, ST |
terpinen-4-ol | 1174 | 0.1 | 0.3 | 0.2 | − | RI, GC-MS, ST |
α-terpineol | 1188 | 0.4 | 0.3 | 0.4 | − | RI, GC-MS, ST |
Sesquiterpene hydrocarbons | 62.5 | 67.6 | 67.3 | 5.6 | ||
δ-elemene | 1336 | − | 0.7 | 1.0 | − | RI, GC-MS |
α-cubebene | 1348 | − | 0.5 | 0.2 | − | RI, GC-MS |
α-copaene | 1377 | − | 10.2 | 8.7 | − | RI, GC-MS |
β-elemene | 1390 | 7.4 | 4.1 | 2.5 | 5.6 | RI, GC-MS |
β-patchoulene | 1380 | 0.4 | − | − | − | RI, GC-MS |
β-bourbonene | 1384 | − | 1.1 | 1.1 | − | RI, GC-MS |
β-cubebene | 1388 | 3.5 | − | − | − | RI, GC-MS |
cyperene | 1401 | 5.7 | − | − | − | RI, GC-MS |
α-gurjunene | 1409 | 0.6 | 0.8 | 0.7 | − | RI, GC-MS |
β-caryophyllene | 1420 | 17.7 | 21.8 | 22.4 | − | RI, GC-MS, ST |
β-gurjunene | 1434 | 1.2 | − | − | − | RI, GC-MS |
β-selinene | 1489 | 3.1 | 5.0 | 5.5 | − | RI, GC-MS |
valencene | 1496 | 4.1 | 0.5 | 0.5 | − | RI, GC-MS |
germacrene-D | 1481 | 12.0 | 14.9 | 16.8 | − | RI, GC-MS, ST |
δ-cadinene | 1522 | 6.8 | 8.0 | 7.9 | − | RI, GC-MS |
Oxygenated sesquiterpenes | 30.0 | 16.5 | 13.1 | 93.1 | ||
spathulenol | 1575 | 1.2 | 4.3 | 2.1 | − | RI, GC-MS |
caryophyllene oxide | 1578 | 6.0 | 4.0 | 4.5 | − | RI, GC-MS, ST |
humulene epoxide II | 1605 | 5.1 | − | − | − | RI, GC-MS |
10- epi-γ-eudesmol | 1609 | 1.3 | − | − | − | RI, GC-MS |
di- epi-cubenol | 1616 | − | 1.1 | 3.1 | − | RI, GC-MS |
hinesol | 1637 | 0.7 | 2.3 | − | − | RI, GC-MS |
cubenol | 1642 | 0.5 | − | − | − | RI, GC-MS |
α-muurolol | 1646 | 10.0 | 0.5 | 0.5 | − | RI, GC-MS |
α-cadinol | 1653 | 5.2 | 2.2 | 1.5 | − | RI, GC-MS |
α-bisabolol | 1685 | − | 2.1 | 1.4 | 93.1 | RI, GC-MS, ST |
Total (%) | 99.4 | 99.6 | 99.0 | 98.7 | ||
Unidentified | 0.6 | 0.4 | 1.0 | 1.3 | ||
Yield (%) | 0.4 | 0.5 | 0.8 | 0.7 |
Microorganisms | Inhibition zone (mm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inflorescences (mg) | Fresh leaves (mg) | Dry leaves (mg) | Branches (mg) | Control | |||||||||
5 | 10 | 20 | 5 | 10 | 20 | 5 | 10 | 20 | 5 | 10 | 20 | ||
S. aureus | 0 | 0 | 12 | 0 | 9 | 12 | 0 | 10 | 14 | 0 | 0 | 10 | 24 |
S. pyogenes | 0 | 0 | 9 | 0 | 10 | 13 | 0 | 12 | 14 | 0 | 0 | 11 | 20 |
E. coli | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26 |
P. aeruginosa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |
C. albicans | 0 | 0 | 11 | 0 | 0 | 12 | 0 | 0 | 14 | 0 | 0 | 11 | 30 |
C. tropicalis | 0 | 0 | 13 | 0 | 0 | 14 | 0 | 0 | 14 | 0 | 0 | 12 | 25 |
Microorganisms | MIC (μg/mL) | ||||
---|---|---|---|---|---|
Inflorescences | Fresh leaves | Dry leaves | Branches | Control | |
S. aureus | 125 | 310 | 310 | 500 | 2 |
S. pyogenes | 40 | 20 | 10 | 250 | 4 |
E. coli | >1,000 | >1,000 | >1,000 | >1,000 | 8 |
P. aeruginosa | >1,000 | >1,000 | >1,000 | >1,000 | >64 |
C. albicans | 125 | 15 | 60 | 100 | 15 |
C. tropicalis | 125 | 60 | 125 | 100 | 45 |
Oils/Chemical | IC50 (μg/mL) | |
---|---|---|
DPPH | Fe+3 Reducing Power | |
Inflorescences | 38.77 ± 0.76 | 109.85 ± 1.68 |
Fresh leaves | 61.61 ± 1.01 | 140.56 ± 0.51 |
Dry leaves | 49.06 ± 0.98 | 135.23 ± 1.53 |
Branches | 102.24 ± 1.96 | 169.53 ± 0.64 |
Rutin | 5.07 ± 0.04 | − |
Ascorbic acid | − | 63.41 ± 3.87 |
3. Experimental Section
3.1. Plant Material
3.2. Isolation of the Essential Oils
3.3. Gas Chromatographic Analysis
3.4. Gas Chromatography/Mass Spectrometry Analysis (GC/MS)
3.5. Component Identification
3.6. Microbial Strains
3.7. Screening for Antimicrobial Activity
3.8. Determination of the Minimum Inhibitory Concentration
3.9. Free Radical Scavenging Activity Determination
3.10. Reducing Power Assay
3.11. Statistical Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Burt, S. Essential oils: Their antibacterial properties and potential application in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Pichersky, E.; Noel, J.P.; Dudareva, N. Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science 2006, 311, 800–811. [Google Scholar]
- Sonboli, A.; Salehi, P.; Kanani, M.R.; Ebrahimi, S.N. Antibacterial and Antioxidant Activity and Essential Oil Composition of Grammosciadium scabridum Boiss from Iran. Z. Naturforsch. C 2005, 60, 534–538. [Google Scholar]
- Del-Vechio-Vieira, G.; Sousa, O.V.; Yamamoto, C.H.; Kaplan, M.A.C. Chemical composition and antimicrobial activity of the essential oils of Ageratum fastigiatum (Asteraceae). Rec. Nat. Prod. 2009, 3, 46–51. [Google Scholar]
- Owolabi, M.S.; Ogundajo, A.; Lajide, L.; Oladimeji, M.O.; Setzer, W.N.; Palazzo, M.C. Chemical composition and antibacterial activity of the essential oil of Lippia multiflora Moldenke from Nigeria. Rec. Nat. Prod. 2009, 3, 170–177. [Google Scholar]
- Abderrahim, A.; Belhamel, K.; Chalchat, J.-C.; Figuérédo, G. Chemical composition of the essential oil from Artemisia arborescens L. growing wild in Algeria. Rec. Nat. Prod. 2010, 4, 87–90. [Google Scholar]
- Marino, M.; Bersani, C.; Comi, G. Impedance measurements to study the antimicrobial activity of essential oils from Lamiacea and Compositae. Int. J. Food Microbiol. 2001, 67, 187–195. [Google Scholar] [CrossRef]
- Delaquis, P.J.; Stanich, K.; Girard, B.; Mazza, G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 2002, 74, 101–109. [Google Scholar] [CrossRef]
- Goze, I.; Alim, A.; Tepe, A.S.; Sokmen, M.; Sevgi, K.; Tepe, B. Screening of the antioxidant activity of essential oil and various extracts of Origanum rotundifolium Boiss. From Turkey. J. Med. Plants Res. 2009, 3, 246–254. [Google Scholar]
- Si, W.; Gong, J.; Tsao, R.; Zhou, T.; Yu, H.; Poppe, C.; Johnson, R.; Du, Z. Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. J. Appl. Microbiol. 2006, 100, 296–305. [Google Scholar] [CrossRef]
- Sonboli, A.; Babakhani, B.; Mehrabian, A.R. Antimicrobial activity of six constituents of essential oil from Salvia. Z. Naturforsch. C 2006, 61, 160–164. [Google Scholar]
- Sousa, O.V.; Oliveira, M.S.; Rabello, S.V.; Cunha, R.O.; Costa, B.L.S.; Leite, M.N. Estudo farmacognóstico de galhos de Vanillosmopsis erythropappa Schult. Bip.—Asteraceae. Rev. Bras. Farmacog. 2003, 13, 50–53. [Google Scholar] [CrossRef]
- Braun, N.A.; Meier, M.; Kohlenberg, B.; Hammerschimidt, F.-J. Two new bisabolene diols from the stem wood essential oil of Vanillosmopsis erythropappa Schultz-Bip. (Asteraceae). J. Essent. Oil Res. 2003, 15, 139–142. [Google Scholar]
- Lopes, J.N.C.; Lopes, J.L.C.; Vichnewski, W.; Rodrigues, D.C.; Gottlieb, O.R. Chemical variability of Vanillosmopsis erythropappa. An. Acad. Bras. Ciências 1991, 63, 21–24. [Google Scholar]
- Lima, F.W.J.; Dantas-Barros, A.M.; Soares, B.M.; Santos, D.A.; de Resende, M.A.; de Carvalho, M.A.R.; Siqueira, E.P.; Nelson, D.L. The composition and anti-microbial activity of the essential oil from Eremanthus erythropappus (DC) Macleish (Candeia). Int. J. Arom. Plants 2013, 3, 1–10. [Google Scholar]
- Lima, P.D.D.B.; Garcia, M.; Rabi, J.A. Selective extraction of α-methylene-γ-lactones. Reinvestigation of Vanillosmopsis erythropappa. J. Nat. Prod. 1985, 48, 986–988. [Google Scholar] [CrossRef]
- Corbrella, A.; Gariboldi, P.; Jommi, G. Structure and absolute stereochemistry of vanillosmin, a guaianolide from Vanillosmopsis erythropappa. Phytochemistry 1974, 13, 459–465. [Google Scholar] [CrossRef]
- Vichnewski, W.; Lopes, J.N.C.; Santos-Filho, D.; Herz, W. 15-Deoxygoyazensolide, a new heliangolide from Vanillosmopsis erythropappa. Phytochemistry 1976, 15, 1775–1776. [Google Scholar] [CrossRef]
- Vichnewski, W.; Takahashi, A.M.; Nasi, A.M.T.; Rodrigues, D.C.; Gonçalves, G.; Dias, D.A.; Lopes, J.N.C.; Goedken, V.L.; Gutiérrez, A.B.; Herz, W. Sesquiterpene lactones and other constituents from Eremanthus seidelii, E. goyazensis and Vanillosmopsis erythropappa. Phytochemistry 1989, 28, 1441–1451. [Google Scholar] [CrossRef]
- Sousa, O.V.; Dutra, R.C.; Yamamoto, C.H.; Pimenta, D.S. Estudo comparativo da composição química e da atividade biológica dos óleos essenciais das folhas de Eremanthus erythropappus (DC) McLeisch. Rev. Bras. Farm. 2008, 89, 113–116. [Google Scholar]
- Sousa, O.V.; Silvério, M.S.; Del-Vechio-Vieira, G.; Matheus, F.C.; Yamamoto, C.H.; Alves, M.S. Antinociceptive and anti-inflammatory effects of the essential oil from Eremanthus erythropappus leaves. J. Pharm. Pharmacol. 2008, 60, 771–777. [Google Scholar] [CrossRef]
- Jakovlev, V.; Isaac, O.; Thiemer, K.; Kunde, R. Pharmacological investigations with compounds of chamomile—New investigations on the antiphlogistic effects of (−)-α-bisabolol and bisabolol oxides. Planta Med. 1979, 35, 125–140. [Google Scholar] [CrossRef]
- Silvério, M.S.; Sousa, O.V.; Del-Vechio-Vieira, G.; Miranda, M.A.; Matheus, F.C.; Kaplan, M.A.C. Propriedades farmacológicas do extrato etanólico de Eremanthus erythropappus (DC.) McLeisch (Asteraceae). Rev. Bras. Farmacog. 2008, 18, 430–435. [Google Scholar] [CrossRef]
- Nascimento, A.M.A.; Brandão, M.G.L.; Oliveira, G.B.; Fortes, I.C.P.; Chartone-Souza, E. Synergistic bactericidal activity of Eremanthus erythropappus oil or β-bisabolene with ampicillin against Staphylococcus. Antonie Van Leeuwenhoek 2007, 92, 95–100. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Co.: Carol Stream, IL, USA, 2007. [Google Scholar]
- Vekiari, S.A.; Protopapadakis, E.E.; Papadopoulou, P.; Papanicolaou, D.; Panou, C.; Vamvakias, M. Composition and seasonal variation of the essential oil from leaves and peel of a Cretan lemon variety. J. Agric. Food Chem. 2002, 50, 147–153. [Google Scholar] [CrossRef]
- Tepe, B.; Daferera, D.; Sökmen, M.; Polissiou, M.; Sökmen, A. In vitro antimicrobial andantioxidantactivities of the essential oils and various extracts of Thymus eigii M. Zohary et P.H. Davis. J. Agric. Food Chem. 2004, 52, 1132–1127. [Google Scholar] [CrossRef]
- Laciar, A.; Ruiz, M.L.; Flores, R.C.; Saad, J.R. Antibacterial and antioxidant activities of the essential oil of Artemisia echegarayi Hieron. (Asteraceae). Rev. Argent. Microbiol. 2009, 41, 226–231. [Google Scholar]
- Sökmen, A.; Sökmen, M.; Daferera, D.; Polissiou, M.; Candan, F.; Unlü, M.; Akpulat, H.A. The in vitro antioxidant and antimicrobial activities of the essential oil and methanol extracts of Achillea biebersteini Afan. (Asteraceae). Phytother. Res. 2004, 18, 451–456. [Google Scholar] [CrossRef]
- Yayli, N.; Yaşar, A.; Güleç, C.; Usta, A.; Kolayli, S.; Coşkunçelebi, K.; Karaoğlu, Ş. Composition and antimicrobial activity of essential oils from Centaurea sessilis and Centaurea armena. Phytochemistry 2005, 66, 1741–1745. [Google Scholar]
- Matasyoh, J.C.; Kiplimo, J.J.; Karubiu, N.M.; Hailstorks, T.P. Chemical composition and antimicrobial activity of essential oil of Tarchonanthus camphoratus. Food Chem. 2007, 101, 1183–1187. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Q.; Liu, Y.; Zhou, X.; Wang, X. Isolation and biological activities of decanal, linalool, valencene, and octanal from sweet orange oil. J. Food Sci. 2012, 77, C1156–C1161. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef]
- Sati, S.C.; Sati, N.; Rawat, U.; Sati, O.P. Medicinal plants as a source of antioxidants. Res. J. Phytochem. 2010, 4, 213–224. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar]
- Sen, S.; Chakraborty, R.; Sridhar, C.; Reddy, Y.S.R.; De, B. Free radicals, antioxidants, diseases and phytomedicines: Current status and future prospect. Int. J. Pharm. Sci. Rev. Res. 2010, 3, 91–100. [Google Scholar]
- Maisuthisakul, P.; Suttajit, M.; Pongsawatmanit, R. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem. 2007, 100, 1409–1418. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar]
- Denny, E.F.K. Hydro-distillation of oils from aromatic herbs. Perfum Flavor. 1989, 14, 57–63. [Google Scholar]
- Rios, J.L.; Recio, M.C.; Villar, A. Screening methods for natural products with antimicrobial activity: A review of the literature. J. Ethnopharmacol. 1988, 23, 127–149. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard, 8th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008.
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008.
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; Santos, T.C.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the essential oils from Eremanthus erythropappus (DC) McLeisch are available from the authors.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Silvério, M.S.; Del-Vechio-Vieira, G.; Pinto, M.A.O.; Alves, M.S.; Sousa, O.V. Chemical Composition and Biological Activities of Essential Oils of Eremanthus erythropappus (DC) McLeisch (Asteraceae). Molecules 2013, 18, 9785-9796. https://doi.org/10.3390/molecules18089785
Silvério MS, Del-Vechio-Vieira G, Pinto MAO, Alves MS, Sousa OV. Chemical Composition and Biological Activities of Essential Oils of Eremanthus erythropappus (DC) McLeisch (Asteraceae). Molecules. 2013; 18(8):9785-9796. https://doi.org/10.3390/molecules18089785
Chicago/Turabian StyleSilvério, Marcelo S., Glauciemar Del-Vechio-Vieira, Míriam A. O. Pinto, Maria S. Alves, and Orlando V. Sousa. 2013. "Chemical Composition and Biological Activities of Essential Oils of Eremanthus erythropappus (DC) McLeisch (Asteraceae)" Molecules 18, no. 8: 9785-9796. https://doi.org/10.3390/molecules18089785
APA StyleSilvério, M. S., Del-Vechio-Vieira, G., Pinto, M. A. O., Alves, M. S., & Sousa, O. V. (2013). Chemical Composition and Biological Activities of Essential Oils of Eremanthus erythropappus (DC) McLeisch (Asteraceae). Molecules, 18(8), 9785-9796. https://doi.org/10.3390/molecules18089785