The Role of Acyl-Glucose in Anthocyanin Modifications
Abstract
:1. Introduction
2. UGTs Involved in Acyl-Glucose Generation
3. Acyl-Glucoses as Potential Intermediates for Secondary Metabolite Biosynthesis
4. Carnations
5. Delphiniums
6. Arabidopsis
7. Perspectives and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Mori, M.; Kondo, T. Blue flower color development by anthocyanins: From chemical structure to cell physiology. Nat. Prod. Rep. 2009, 26, 884–915. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, N.; Nakayama, T. Achievements and perspectives in biochemistry concerning anthocyanin modification for blue flower coloration. Plant Cell Physiol. 2014, in press. [Google Scholar]
- Yonekura-Sakakibara, K.; Hanada, K. An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J. 2011, 66, 182–193. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, J.C. Acyltransferases in plants: A good time to be BAHD. Curr. Opin. Plant Biol. 2006, 9, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuka, T.; Saito, M.; Yamada, E.; Nishihara, M. Production of picotee-type flowers in Japanese gentian by CRES-T. Plant Biotechnol. 2011, 28, 173–180. [Google Scholar] [CrossRef]
- Fukuchi-Mizutani, M.; Okuhara, H.; Fukui, Y.; Nakao, M.; Katsumoto, Y.; Yonekura-Sakakibara, K.; Kusumi, T.; Hase, T.; Tanaka, Y. Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3'-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol. 2003, 132, 1652–1663. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, H.; Tanaka, Y.; Fukui, Y.; Nakao, M.; Ashikari, T.; Kusumi, T. Anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Purification, characterization and its role in anthocyanin biosynthesis. Eur. J. Biochem. 1997, 249, 45–51. [Google Scholar]
- Fujiwara, H.; Tanaka, Y.; Yonekura-Sakakibara, K.; Fukuchi-Mizutani, M.; Nakao, M.; Fukui, Y.; Yamaguchi, M.; Ashikari, T.; Kusumi, T. cDNA cloning, gene expression and subcellular localization of anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Plant J. 1998, 16, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuka, T.; Mishiba, K.; Kubota, A.; Abe, Y.; Yamamura, S.; Nakamura, N.; Tanaka, Y.; Nishihara, M. Genetic engineering of novel flower colour by suppression of anthocyanin modification genes in gentian. J. Plant Physiol. 2010, 167, 231–237. [Google Scholar] [CrossRef]
- Gläßgen, W.E.; Seitz, H.U. Acylation of anthocyanins with hydroxycinnamic acid via 1-O-acylglucosides by protein preparations from cell cultures of Daucus carota L. Planta 1992, 186, 582–585. [Google Scholar] [CrossRef] [PubMed]
- Matsuba, Y.; Okuda, Y.; Abe, Y.; Kitamura, Y.; Terasaka, K.; Mizukami, H.; Kamakura, K.; Kawahara, N.; Goda, Y.; Sasaki, N.; et al. Enzymatic preparation of 1-O-hydroxycinnamoyl-β-D-glucose and their application to the study of 1-O-hydroxycynnamoyl-β-D-glucose dependent acyltransferase in anthocyanin-producing cultured cells of Daucus carota and Glehnia littorails. Plant Biotechnol. 2008, 25, 369–375. [Google Scholar] [CrossRef]
- Bokern, M.; Strack, D. Synthesis of hydroxycinnamic acid esters of betacyanins via 1-O-acylglucosides of hydroxycinnamic acids by protein preparations from cell suspension cultures of Chenopodium rubrum and petals of Lampranthus sociorum. Planta 1988, 174, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Lehfeldt, C.; Shirley, A.M.; Meyer, K.; Ruegger, M.O.; Cusumano, J.C.; Viitanen, P.V.; Strack, D.; Chapple, C. Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell 2000, 12, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Li, A.X.; Steffens, J.C. An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase-like protein. Proc. Natl. Acad. Sci. USA 2000, 97, 6902–6907. [Google Scholar] [CrossRef] [PubMed]
- Hause, B.; Meyer, K.; Viitanen, P.V.; Chapple, C.; Strack, D. Immunolocalization of 1-O-sinapoylglucose: Malate sinapoyltransferase in Arabidopsis thaliana. Planta 2002, 215, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Nishizaki, Y.; Yasunaga, M.; Okamoto, E.; Okamoto, M.; Hirose, Y.; Yamaguchi, M.; Ozeki, Y.; Sasaki, N. p-Hydroxybenzoyl-glucose is a Zwitter donor for the biosynthesis of 7-polyacylated anthocyanin in delphinium. Plant Cell 2013, 25, 4150–4165. [Google Scholar] [CrossRef] [PubMed]
- Matsuba, Y.; Sasaki, N.; Tera, M.; Okamura, M.; Abe, Y.; Okamoto, E.; Nakamura, H.; Funabashi, H.; Takatsu, M.; Saito, M.; et al. A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium. Plant Cell 2010, 22, 3374–3389. [Google Scholar] [CrossRef] [PubMed]
- Miyahara, T.; Sakiyama, R.; Ozeki, Y.; Sasaki, N. Acyl-glucose-dependent glucosyltransferase catalyzes the final step of anthocyanin formation in Arabidopsis. J. Plant Physiol. 2013, 170, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Miyahara, T.; Takahashi, M.; Ozeki, Y.; Sasaki, N. Isolation of an acyl-glucose-dependent anthocyanin 7-O-glucosyltransferase from the monocot Agapanthus africanus. J. Plant Physiol. 2012, 169, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Miyahara, T.; Tani, T.; Takahashi, M.; Nishizaki, N.; Ozeki, Y.; Sasaki, N. Isolation of anthocyanin 7-O-glucosyltransferase from Canterbury bells (Campanula medium). Plant Biotechnol 2014, in press. [Google Scholar]
- Vogt, T.; Jones, P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci. 2000, 5, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.K.; Li, Y.; Parr, A.; Jackson, R.; Ashford, D.A.; Bowles, D.J. Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis. J. Biol. Chem. 2001, 276, 4344–4349. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.K.; Doucet, C.J.; Li, Y.; Elias, L.; Worrall, D.; Spencer, S.P.; Ross, J.; Bowles, D.J. The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J. Biol. Chem. 2002, 277, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Yonekura-Sakakibara, K.; Fukushima, A.; Nakabayashi, R.; Hanada, K.; Matsuda, F.; Sugawara, S.; Inoue, E.; Kuromori, T.; Ito, T.; Shinozaki, K.; et al. Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. Plant J. 2012, 69, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Meißner, D.; Albert, A.; Bottcher, C.; Strack, D.; Milkowski, C. The role of UDP-glucose: Hydroxycinnamate glucosyltransferases in phenylpropanoid metabolism and the response to UV-B radiation in Arabidopsis thaliana. Planta 2008, 228, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Eudes, A.; Bozzo, G.G.; Waller, J.C.; Naponelli, V.; Lim, E.K.; Bowles, D.J.; Gregory, J.F., III; Hanson, A.D. Metabolism of the folate precursor p-aminobenzoate in plants: Glucose ester formation and vacuolar storage. J. Biol. Chem. 2008, 283, 15451–15459. [Google Scholar]
- Dean, J.V.; Delaney, S.P. Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiol. Plantarum 2008, 132, 417–425. [Google Scholar] [CrossRef]
- Hall, D.; de Luca, V. Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape (Vitis labrusca). Plant J. 2007, 49, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Kita, M.; Hirata, Y.; Moriguchi, T.; Endo-Inagaki, T.; Matsumoto, R.; Hasegawa, S.; Suhayda, C.G.; Omura, M. Molecular cloning and characterization of a novel gene encoding limonoid UDP-glucosyltransferase in Citrus. FEBS Lett. 2000, 469, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Ford, C.M.; Boss, P.K.; Hoj, P.B. Cloning and characterization of Vitis vinifera UDP-glucose: Flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J. Biol. Chem. 1998, 273, 9224–9233. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.I.; Raskin, I. Purification, cloning, and expression of a pathogen inducible UDP-glucose: Salicylic acid glucosyltransferase from tobacco. J. Biol. Chem. 1999, 274, 36637–36642. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, G.; Imura, H.; Maeda, Y.; Kodaira, R.; Hayashida, N.; Shimosaka, M.; Okazaki, M. Purification and characterization of UDP-glucose:hydroxycoumarin 7-O-glucosyltransferase, with broad substrate specificity from tobacco cultured cells. Plant Sci. 2000, 157, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Nishizaki, Y.; Sasaki, N.; Yasunaga, M.; Miyahara, T.; Okamoto, E.; Okamoto, M.; Hirose, Y.; Ozeki, Y. Identification of the glucosyltransferase gene that supplies the p-hydroxybenzoyl-glucose for 7-polyacylation of anthocyanin in delphinium. J. Exp. Bot. 2014, 65, 2495–2506. [Google Scholar] [CrossRef] [PubMed]
- Li, A.X.; Eannetta, N.; Ghangas, G.S.; Steffens, J.C. Glucose polyester biosynthesis. Purification and characterization of a glucose acyltransferase. Plant Physiol. 1999, 121, 453–460. [Google Scholar]
- Lunkenbein, S.; Bellido, M.; Aharoni, A.; Salentijn, E.M.; Kaldenhoff, R.; Coiner, H.A.; Munoz-Blanco, J.; Schwab, W. Cinnamate metabolism in ripening fruit. Characterization of a UDP-glucose: Cinnamate glucosyltransferase from strawberry. Plant Physiol. 2006, 140, 1047–1058. [Google Scholar]
- Landmann, C.; Fink, B.; Schwab, W. FaGT2: A multifunctional enzyme from strawberry (Fragaria x ananassa) fruits involved in the metabolism of natural and xenobiotic compounds. Planta 2007, 226, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Ozeki, Y.; Matsuba, Y.; Abe, Y.; Umemoto, N.; Sasaki, N. Pigment biosynthsis I. Anthoycanins. In Plant Metabolism and Biotechnology, 1st ed.; Ashihara, H., Crozeir, A., Komamine, A., Eds.; Wiley: West Sussex, UK, 2011; pp. 321–342. [Google Scholar]
- Veitch, N.C.; Grayer, R.J. Flavonoids and their glycosides, including anthocyanins. Nat. Prod. Rep. 2008, 25, 555–611. [Google Scholar] [CrossRef] [PubMed]
- Teng, X.F.; Yang, J.Y.; Yang, C.R.; Zhang, Y.J. New flavonol glycosides from the fresh flowers of Camellia reticulate. Helve. Chim. Acta 2008, 91, 1305–1312. [Google Scholar] [CrossRef]
- Sharma, V.; Strack, D. Vacuolar localization of 1-sinapolglucose: L-Malate sinapoyltransferase in protoplasts from cotyledons of Raphanus sativus. Planta 1985, 163, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Baumert, A.; Milkowski, C.; Schmidt, J.; Nimtz, M.; Wray, V.; Strack, D. Formation of a complex pattern of sinapate esters in Brassica napus seeds, catalyzed by enzymes of a serine carboxypeptidase-like acyltransferase family? Phytochemistry 2005, 66, 1334–1345. [Google Scholar] [CrossRef] [PubMed]
- Frohlich, B.; Niemetz, R.; Gross, G.G. Gallotannin biosynthesis: Two new galloyltransferases from Rhus typhina leaves preferentially acylating hexa- and heptagalloylglucoses. Planta 2002, 216, 168–172. [Google Scholar] [CrossRef] [PubMed]
- D’Abrosca, B.; Scognamiglio, M.; Tsafantakis, N.; Fiorentino, A.; Monaco, P. Phytotoxic chlorophyll derivatives from Petrorhagia velutina (Guss) Ball et Heyw leaves. Nat. Prod. Commun. 2010, 5, 99–102. [Google Scholar]
- Abe, Y.; Tera, M.; Sasaki, N.; Okamura, M.; Umemoto, N.; Momose, M.; Kawahara, N.; Kamakura, H.; Goda, Y.; Nagasawa, K.; et al. Detection of 1-O-malylglucose: Pelargonidin 3-O-glucose-6''-O-malyltransferase activity in carnation (Dianthus caryophyllus). Biochem. Biophys. Res. Commun. 2008, 373, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Fraser, C.M.; Thompson, M.G.; Shirley, A.M.; Ralph, J.; Schoenherr, J.A.; Sinlapadech, T.; Hall, M.C.; Chapple, C. Related Arabidopsis serine carboxypeptidase-like sinapoylglucose acyltransferases display distinct but overlapping substrate specificities. Plant Physiol. 2007, 144, 1986–1999. [Google Scholar] [CrossRef] [PubMed]
- Mock, H.P.; Strack, D. Energetics of the uridine 5-diphosphoglucose: Hydroxycinnamic acid acyltransferase reaction. Phytochemistry 1993, 32, 515–519. [Google Scholar] [CrossRef]
- Shirley, A.M.; McMichael, C.M.; Chapple, C. The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase-like protein sinapoylglucose:choline sinapoyltransferase. Plant J. 2001, 28, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kaminaga, Y.; Cooper, B.; Pichersky, E.; Dudareva, N.; Chapple, C. Benzoylation and sinapoylation of glucosinolate R-groups in Arabidopsis. Plant J. 2012, 72, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Bloor, S.J. A macrocyclic anthocyanin from red mauve carnation flowers. Phytochemistry 1997, 49, 225–228. [Google Scholar] [CrossRef]
- Nakayama, M.; Koshioka, M.; Yoshida, H.; Kan, Y.; Fukui, Y.; Koike, A.; Yamaguchi, M. Cyclic malyl anthocyanins in Dianthus caryophyllus. Phytochemistry 2000, 55, 937–939. [Google Scholar] [CrossRef] [PubMed]
- Terahara, N.; Yamaguchi, M. 1H-NMR spectral analysis of the malylated anthocyanins from Dianthus. Phytochemistry 1986, 25, 2906–2907. [Google Scholar] [CrossRef]
- Terahara, N.; Yamaguchi, M.; Takeda, K.; Harborne, J.B.; Self, R. Anthocyanins acylated with malic acid in Dianthus caryophyllus and D. deltoides. Phytochemistry 1986, 25, 1715–1717. [Google Scholar] [CrossRef]
- Yonekura-Sakakibara, K.; Nakayama, T.; Yamazaki, M.; Saito, K. Modification and stabilization of anthocyanins. In Anthoycanins Biosynthesis, Functions, and Applications, 1st ed.; Gould, K., Davies, K., Winefield, C., Eds.; Springer Science+Business: New York, NY, USA, 2009; pp. 169–190. [Google Scholar]
- Takeda, K.; Kumegawa, C.; Harborne, J.B.; Self, R. Pelargonidin 3-(6''-succinyl glucoside)-5-glucoside from pink Centaurea cyanus flowers. Phytochemistry 1988, 27, 1228–1229. [Google Scholar] [CrossRef]
- Takeda, K.; Osakabe, A.; Saito, S.; Furuyama, D.; Tomita, A.; Kojima, Y.; Yamadera, M.; Sakuta, M. Components of protocyanin, a blue pigment from the blue flowers of Centaurea cyanus. Phytochemistry 2005, 66, 1607–1613. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Kondo, T.; Kato, Y.; Goto, T. Structures of a succinyl anthocyanin and a malonyl flavone, two constituents of the complex blue pigment of cornflower Centaurea cyanus. Tetrahedron Lett. 1983, 24, 5749–5752. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Maki, T.; Ohishi, T.; Ino, I. Succinyl-coenzyme A: Anthocyanidin 3-glucoside succinyltransferase in flowers of Centaurea cyanus. Phytochemistry 1995, 39, 311–313. [Google Scholar] [CrossRef]
- Umemoto, N.; Abe, Y.; Cano, E.A.; Okamura, M.; Sasaki, N.; Yoshida, S.; Ozeki, Y. Carnation serine carboxypeptodase-like acyltransferase is important for anthocyanin malyltransferase activity and formation of anthocycanic vacuolar inclusions. In Proceedings of the 5th International Workshop on Anthocyanins, Nagoya, Japan, 16 September 2009; p. 115.
- Ogata, J.; Itoh, Y.; Ishida, M.; Yoshida, H.; Ozeki, Y. Cloning and heterologous expression of cDNA encoding flavonoid glucosyltrasnferase from Dianthus caryophyllus. Plant Biotechnol. 2004, 21, 367–375. [Google Scholar] [CrossRef]
- Okamura, M.; Nakayama, M.; Umemoto, N.; Cano, E.A.; Hase, Y.; Nishizaki, Y.; Sasaki, N.; Ozeki, Y. Crossbreeding of a metallic color carnation and diversification of the peculiar coloration by ion-beam irradiation. Euphytica 2013, 191, 45–56. [Google Scholar] [CrossRef]
- Winkel, B.S. Metabolic channeling in plants. Annu. Rev. Plant Biol. 2004, 55, 85–107. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, F.; Tanaka, M.; Maeda, H.; Fukuda, S.; Shimizu, K.; Sakata, Y. Changes in flower coloration and sepal anthocyanins of cyanic delphinium cultivars during flowering. Biosci. Biotechnol. Biochem. 2002, 66, 1652–1659. [Google Scholar] [CrossRef] [PubMed]
- Honda, T.; Saito, N. Recent progress in the chemistry of polyacylated anthocyanins as flower color pigments. Heterocycles 2002, 56, 633–692. [Google Scholar] [CrossRef]
- Goto, T.; Kondo, T. Structure and molecular stacking of anthocyanins-flower color varietion. Angew. Chem. Int. Ed. Engl. 1991, 30, 17–33. [Google Scholar] [CrossRef]
- Haiter, J.H.B.; Goud, K.S. Anthocyanin function in vesitative organs. In Anthoycanins Biosynthesis, Functions, and Applications, 1st ed.; Gould, K., Davies, K., Winefield, C., Eds.; Springer Science+Business: New York, NY, USA, 2009; pp. 1–12. [Google Scholar]
- Bloor, S.J.; Abrahams, S. The structure of the major anthocyanin in Arabidopsis thaliana. Phytochemistry 2002, 59, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Tohge, T.; Nishiyama, Y.; Hirai, M.Y.; Yano, M.; Nakajima, J.; Awazuhara, M.; Inoue, E.; Takahashi, H.; Goodenowe, D.B.; Kitayama, M.; et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 2005, 42, 218–235. [Google Scholar] [CrossRef] [PubMed]
- Kubo, H.; Nawa, N.; Lupsea, S.A. Anthocyaninless1 gene of Arabidopsis thaliana encodes a UDP-glucose:flavonoid-3-O-glucosyltransferase. J. Plant Res. 2007, 120, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Yoon, H.R.; Paik, Y.S.; Liu, J.R.; Chung, W.; Choi, G. Reciprocal regulation of Arabidopsis UGT78D2 and BANYULS is critical for regulation of the metabolic flux of anthocyanidins to condensed tannins in developing seed coats. J. Plant Biol. 2005, 48, 356–370. [Google Scholar] [CrossRef]
- Luo, J.; Nishiyama, Y.; Fuell, C.; Taguchi, G.; Elliott, K.; Hill, L.; Tanaka, Y.; Kitayama, M.; Yamazaki, M.; Bailey, P.; et al. Convergent evolution in the BAHD family of acyl transferases: Identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana. Plant J. 2007, 50, 678–695. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, J.C.; Reichelt, M.; Luck, K.; Svatos, A.; Gershenzon, J. Identification and characterization of the BAHD acyltransferase malonyl CoA: Anthocyanidin 5-O-glucoside-6''-O-malonyltransferase (At5MAT) in Arabidopsis thaliana. FEBS Lett. 2007, 581, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, L.; Liu, L.; Yang, Q.; Lu, Z.; Nie, Z.; Wang, Y.; Xia, T. Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis). J. Biol. Chem. 2012, 287, 44406–44417. [Google Scholar] [CrossRef] [PubMed]
- Luang, S.; Cho, J.I.; Mahong, B.; Opassiri, R.; Akiyama, T.; Phasai, K.; Komvongsa, J.; Sasaki, N.; Hua, Y.L.; Matsuba, Y.; et al. Rice Os9BGlu31 is a transglucosidase with the capacity to equilibrate phenylpropanoid, flavonoid, and phytohormone glycoconjugates. J. Biol. Chem. 2013, 288, 10111–10123. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the acyl-glucoses are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasaki, N.; Nishizaki, Y.; Ozeki, Y.; Miyahara, T. The Role of Acyl-Glucose in Anthocyanin Modifications. Molecules 2014, 19, 18747-18766. https://doi.org/10.3390/molecules191118747
Sasaki N, Nishizaki Y, Ozeki Y, Miyahara T. The Role of Acyl-Glucose in Anthocyanin Modifications. Molecules. 2014; 19(11):18747-18766. https://doi.org/10.3390/molecules191118747
Chicago/Turabian StyleSasaki, Nobuhiro, Yuzo Nishizaki, Yoshihiro Ozeki, and Taira Miyahara. 2014. "The Role of Acyl-Glucose in Anthocyanin Modifications" Molecules 19, no. 11: 18747-18766. https://doi.org/10.3390/molecules191118747
APA StyleSasaki, N., Nishizaki, Y., Ozeki, Y., & Miyahara, T. (2014). The Role of Acyl-Glucose in Anthocyanin Modifications. Molecules, 19(11), 18747-18766. https://doi.org/10.3390/molecules191118747