Synthesis and Spectroscopic Properties of New Azo Dyes Derived from 3-Ethylthio-5-cyanomethyl-4-phenyl-1,2,4-triazole
Abstract
:1. Introduction
2. Results and discussions
Product | In Solid State | In CDCl3 Solution |
---|---|---|
Azo Hydrazone | Hydrazone:Azo-enamine | |
3 | ___ 100 | 3B:3C (25:75) |
5 | 100 ___ | 5B:5C (20:80) |
7 | 100 ___ | 7B:7C (60:40) |
8 | ___ 100 | 8B:8C (17:83) |
3. Experimental
3.1. General
3.2. General Procedure for the Synthesis of Arylhydrazone (or Arylazo) Compounds 3, 5, 7 and 8
4. Conclusions
Conflictts of Interest
References
- Towns, A.D. Developments in azo disperse dyes derived from heterocyclic diazo components. Dyes Pigm. 1999, 42, 3–28. [Google Scholar] [CrossRef]
- Venkataraman, K. The Chemistry of Synthetic Dyes; Academic Press: New York, NY, USA and London, UK, 1970; Volume III, pp. 303–369. [Google Scholar]
- Zhang, Y.; Hou, W.; Tan, Y. Structure and dyeing properties of some anthraquinone violet acid dyes. Dyes Pigm. 1997, 34, 25–35. [Google Scholar] [CrossRef]
- Hallas, G.; Towns, A.D. Dyes derived from aminothiophenes. Part 7: Synthesis and properties of some benzo[b]thiophene-based azo disperse dyes. Dyes Pigm. 1997, 35, 219–237. [Google Scholar] [CrossRef]
- Faustino, H.; El-Shishtawy, R.M.; Reis, L.V.; Santos, P.F.; Almeida, P. 2-Nitroso-benzo-thiazoles: Useful synthons for new azobenzothiazole dyes. Tetrahedron Lett. 2008, 49, 6907–6909. [Google Scholar] [CrossRef]
- Sternberg, E.; Dolphin, D.; Matsuoka, M. Infrared Absorbing Dyes; Plenum: New York, NY, USA, 1990; pp. 193–212. [Google Scholar]
- Gregory, P. High-Technology Applications of Organic Colorants; Springer-Verlag: Berlin, Germany, 1993; pp. 7–281. [Google Scholar]
- Mekkawi, D.E.; Abdel-Mottaleb, M.S.A. The interaction and photo stability of some xanthenes and selected azo sensitizing dyes with TiO2 nanoparticles. Int. J. Photo. Energy 2005, 7, 95–101. [Google Scholar] [CrossRef]
- Gregory, P. Modern reprographics. Rev. Prog. Coloration 1994, 24, 1–16. [Google Scholar] [CrossRef]
- Marchevsky, E.; Olsina, R.; Marone, C. 2-[2-(5-Chloropyridyl)azo]-5-(dimethylamino)phenol as indicator for the complexometric determination of zinc. Talanta 1985, 32, 54–56. [Google Scholar] [CrossRef]
- Zhi-Gang, Y.; Chun-Xia, Z.; De-Feng, Z.; Freeman, H.S.; Pei-Tong, C.; Jie, H. Monoazo dyes based on 5,10-dihydrophenophosphazine, Part 2: Azo acid dyes. Dyes Pigm. 2009, 81, 137–143. [Google Scholar] [CrossRef]
- Garg, H.G.; Praksh, C. Preparation of 4-arylazo-3,5-disubstituted-(2H)-1,2,6-thiadiazine-1,1-dioxides. J. Med. Chem. 1972, 15, 435–436. [Google Scholar]
- Khalid, A.; Arshad, M.; Crowley, D.E. Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains. Appl. Microbiol. Biotech. 2008, 78, 361–369. [Google Scholar] [CrossRef]
- Farghaly, Th.A.; Abdallah, Z.A. Synthesis, azo-hydrazone tautomerism and antitumor screening of N-(3-ethoxycarbonyl-4,5,6,7-tetrahydro-benzo[b]thien-2-yl)-2-aryl-hydrazono-3-oxobutanamide derivatives. ARKIVOC 2008, 17, 295–305. [Google Scholar]
- Avci, G.A.; Ozkinali, S.; Ozluk, A.; Avci, E.; Kocaokutgen, H. Antimicrobial activities, absorption characteristics and tautomeric structures of o,o'-hydroxyazo dyes containing an acryloyloxy group and their chromium complexes. Hacettepe J. Biol. Chem. 2012, 40, 119–126. [Google Scholar]
- Park, Ch.; Lim, J.; Lee, Y.; Lee, B.; Kim, S.; Lee, J.; Kim, S. Optimization and morphology for decolorization of reactive black 5 by Funalia trogii. Enzyme Microb. Tech. 2007, 40, 1758–1764. [Google Scholar] [CrossRef]
- Pandey, A.; Singh, P.; Iyengar, L. Bacterial decolorization and degradation of azo dyes. Inter. Biodet. Biodeg. 2007, 59, 73–84. [Google Scholar] [CrossRef]
- Moldovan, C.M.; Oniga, O.; Parvu, A.; Tiperciuc, B.; Verite, P.; Pirnau, A.; Crisan, O.; Bojita, M.; Pop, R. Synthesis and anti-inflammatory evaluation of some new acylhydrazones bearing 2-arylthiazole. Eur. J. Med. Chem. 2011, 46, 526–534. [Google Scholar] [CrossRef]
- Yogeeswari, P.; Menon, N.; Semwal, A.; Arjun, M.; Sriram, D. Discovery of molecules for the treatment of neuropathic pain: Synthesis, antiallodynic and antihyperalgesic activities of 5-(4-nitrophenyl)furoic-2-acid hydrazones. Eur. J. Med. Chem. 2011, 46, 2964–2970. [Google Scholar] [CrossRef]
- Vavrikova, E.; Polanc, S.; Kocevar, M.; Horvati, K.; Bosze, S.; Stolarikova, J.; Vavrova, K.; Vinsova, J. New fluorine-containing hydrazones active against MDR-tuberculosis. Eur. J. Med. Chem. 2011, 46, 4937–4945. [Google Scholar] [CrossRef]
- Dart, R.C. Mushrooms. In Medical Toxicology; Williams & Wilkins: Philadelphia, PA, USA, 2004; pp. 1719–1735. [Google Scholar]
- Stern, H.C.; Matthews, J.H.; Belz, G.G. Influence of dihydralazine induced afterload reduction on systolic time intervals and echocardiography in healthy subjects. Br. Heart J. 1984, 52, 435–439. [Google Scholar] [CrossRef]
- Manabe, K.; Oyamada, H.; Sugita, K.; Kobayashi, S. Use of acylhydrazones as stable surrogates of unstable imines in allylation, mannich-type, and cyanide addition reactions. J. Org. Chem. 1999, 64, 8054–8057. [Google Scholar] [CrossRef]
- Keith, J.M.; Gomez, L. Exploration of the mitsunobu reaction with tosyl- and boc-hydrazones as nucleophilic agents. J. Org. Chem. 2006, 71, 7113–7116. [Google Scholar] [CrossRef]
- Keith, J.M.; Jacobsen, E.N. Asymmetric hydrocyanation of hydrazones catalyzed by lanthanide-PYBOX complexes. Org. Lett. 2004, 6, 153–155. [Google Scholar] [CrossRef]
- Tan, K.L.; Jacobsen, E.N. Indium-mediated asymmetric allylation of acylhydrazones using a chiral urea catalyst. Angew. Chem. Int. Ed. 2007, 46, 1315–1317. [Google Scholar] [CrossRef]
- Lazny, R.; Nodzewska, A. N,N-Dialkylhydrazones in organic synthesis. From simple N,N-dimethylhydrazones to supported chiral auxiliaries. Chem. Rev. 2010, 110, 1386–1434. [Google Scholar] [CrossRef]
- Rollas, S.; Kalyoncuoglu, N.; Sur-Altiner, D.; Yegenoglu, Y. Ubstituted-2,4-dihydro-3H-1,2,4-triazole-3-thiones. Synthesis and antibacterial and antifungal activities. Pharmazie 1993, 48, 308–309. [Google Scholar]
- Sugane, T.; Tobe, T.; Hamaguchi, W.; Shimada, I.; Maeno, K.; Miyata, J.; Suzuki, T.; Kimizuka, T.; Kohara, A.; Morita, T.; et al. Synthesis and biological evaluation of 3-biphenyl-4-yl-4-phenyl-4H-1,2,4-triazoles as novel glycine transporter 1 inhibitors. J. Med. Chem. 2011, 54, 387–391. [Google Scholar] [CrossRef]
- Demange, L.; Boeglin, D.; Moulin, A.; Mousseaux, D.; Ryan, J.; Berge, G.; Gagne, D.; Heitz, A.; Perrissoud, D.; Locatelli, V.; et al. Synthesis and Pharmacological in vitro and in vivo. evaluations of novel triazole derivatives as ligands of the Ghrelin receptor 1. J. Med. Chem. 2007, 50, 1939–1957. [Google Scholar] [CrossRef]
- Zhang, Q.; Keenan, S.M.; Peng, Y.; Nair, A.C.; Yu, S.J.; Howells, R.D.; Welsh, W.J. Discovery of novel triazole-based opioid receptor antagonists. J. Med. Chem. 2006, 49, 4044–4047. [Google Scholar] [CrossRef]
- Clemons, M.; Coleman, E.R.; Verma, S. Aromatase inhibitors in the adjuvant setting: Bringing the gold to a standard? Cancer Treat. Rev. 2004, 30, 325–332. [Google Scholar] [CrossRef]
- Johnston, G.A. Medicinal chemistry and molecular pharmacology of GABA(C) receptors. Curr. Top. Med. Chem. 2002, 2, 903–913. [Google Scholar] [CrossRef]
- Shujuan, S.; Hongxiang, L.; Gao, Y.; Fan, P.; Ma, B.; Ge, W.; Wang, X. Liquid chromatography-tandem mass spectrometric method for the analysis of fluconazole and evaluation of the impact of phenolic compounds on the concentration of fluconazole in Candida albicans. J. Pharm. Biomed. Anal. 2004, 34, 1117–1124. [Google Scholar] [CrossRef]
- Mekheimer, R.; Shaker, R.M. Synthesis and reactivity of 3-alkylthio-5-cyanomethyl-4-phenyl-1,2,4-triazoles. J. Chem. Res. (S) 1999, 1999, 76–77. [Google Scholar] [CrossRef]
- Mekheimer, R.A.; Ibrahim, Y.R.; Ahmed, E.A.; Frey, W. Naphthyridines. Part 3: First example of the polyfunctionally substituted 1,2,4-triazolo[1,5-g][1,6]naphthyridines ring system. Tetrahedron 2009, 65, 9843–9849. [Google Scholar] [CrossRef]
- Mekheimer, R.A.; Sayed, A.A.R.; Ahmed, E.A. Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis Elegans. J. Med. Chem. 2012, 55, 4169–4177. [Google Scholar] [CrossRef]
- Gregory, P. Azo dyes: Structure-carcinogenicity relationships. Dyes Pigments 1986, 7, 45–56. [Google Scholar] [CrossRef]
- Kelemen, J.; Moss, S.; Sauter, H.; Winkler, T. Azo-hydrazone tautomerism in azo dyes. II. Raman, NMR and mass spectrometric investigations of 1-phenylazo-2-naphthylamine and 1-phenylazo-2-naphthol derivatives. Dyes Pigm. 1982, 3, 27–47. [Google Scholar] [CrossRef]
- Kostyuchenko, E.E.; Traven, V.F.; Stepanov, B.I. Tautomeric transformations and color of monoazo dyes. Zh. Obshch. Khim. 1978, 48, 3797. [Google Scholar]
- Karci, F.; Demircali, A. Synthesis of 4-amino-1H-benzo[4,5]imidazo[1,2-a]pyrimidin-2-one and its disperse azo dyes. Part 2: Hetarylazo derivatives. Dyes Pigm. 2006, 71, 97–102. [Google Scholar] [CrossRef]
- Colanceska-Ragenovic, K.; Dimova, V.; Kakurinov, V.; Molnar, D.G.; Buzarovska, A. Synthesis, antibacterial and antifungal activity of 4-substituted-5-aryl-1,2,4-triazoles. Molecules 2001, 6, 815–824. [Google Scholar] [CrossRef]
- Khan, Z.F. ChemBioDraw Ultra 12.0. The Islamic University: Gaza, Palestine, issue: 20.2. 2013. [Google Scholar]
- Pavlović, G.; Racané, L.; Čičak, H.; Tralić-Kulenović, V. The synthesis and structural study of two benzothiazolyl azo dyes: X-ray crystallographic and computational study of azo-hydrazone tautomerism. Dyes Pigm. 2009, 83, 354–362. [Google Scholar]
- Satam, M.A.; Raut, R.K.; Telore, R.D.; Sekar, N. Fluorescent acid azo dyes from 3-(1,3-benzothiazol-2-yl)naphthalen-2-ol and comparison with 2-naphthol analogs. Dyes Pigm. 2013, 97, 32–42. [Google Scholar] [CrossRef]
- Loghmani-Khouzani, H.; Mehrabi, H.; Sadeghi, M.M.M.; Gawinecki, R. Study of hydrazone-hydrazoimine tautomerism in α-azo-6-ketomethylphenanthridines. J. Iran. Chem. Soc. 2009, 6, 129–137. [Google Scholar] [CrossRef]
- Sample Availability: Not available.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Al-Sheikh, M.; Medrasi, H.Y.; Usef Sadek, K.; Mekheimer, R.A. Synthesis and Spectroscopic Properties of New Azo Dyes Derived from 3-Ethylthio-5-cyanomethyl-4-phenyl-1,2,4-triazole. Molecules 2014, 19, 2993-3003. https://doi.org/10.3390/molecules19032993
Al-Sheikh M, Medrasi HY, Usef Sadek K, Mekheimer RA. Synthesis and Spectroscopic Properties of New Azo Dyes Derived from 3-Ethylthio-5-cyanomethyl-4-phenyl-1,2,4-triazole. Molecules. 2014; 19(3):2993-3003. https://doi.org/10.3390/molecules19032993
Chicago/Turabian StyleAl-Sheikh, Mariam, Hanadi Y. Medrasi, Kamal Usef Sadek, and Ramadan Ahmed Mekheimer. 2014. "Synthesis and Spectroscopic Properties of New Azo Dyes Derived from 3-Ethylthio-5-cyanomethyl-4-phenyl-1,2,4-triazole" Molecules 19, no. 3: 2993-3003. https://doi.org/10.3390/molecules19032993
APA StyleAl-Sheikh, M., Medrasi, H. Y., Usef Sadek, K., & Mekheimer, R. A. (2014). Synthesis and Spectroscopic Properties of New Azo Dyes Derived from 3-Ethylthio-5-cyanomethyl-4-phenyl-1,2,4-triazole. Molecules, 19(3), 2993-3003. https://doi.org/10.3390/molecules19032993