Microwave-Assisted Extraction of Herbacetin Diglucoside from Flax (Linum usitatissimum L.) Seed Cakes and Its Quantification using an RP-HPLC-UV System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Microwave-Assisted Extraction
Independent variable | Code unit | Coded variable levels | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
Time (min) | X1 | 1 | 6 | 15 |
Microwave power (W) | X2 | 50 | 100 | 150 |
NaOH concentration (M) | X3 | 0.1 | - | 1 |
Batch | X1 | X2 | X3 | X12 | X22 | X32 | X1 X2 | X2 X3 | X1X3 | X1 X2 X3 | Quantified HDG (mg/g DW) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −1 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | 1 | −1 | 2.01 ± 0.49 |
2 | −1 | −1 | 1 | 1 | 1 | 1 | 1 | −1 | −1 | 1 | 1.75 ± 0.24 |
3 | −1 | 0 | −1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 3.42 ± 0.46 |
4 | −1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | −1 | 0 | 4.27 ± 0.09 |
5 | −1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | 1 | 1 | 4.80 ± 0.21 |
6 | −1 | 1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | 5.00 ± 0.24 |
7 | 0 | −1 | −1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 2.90 ± 0.01 |
8 | 0 | −1 | 1 | 0 | 1 | 1 | 0 | −1 | 0 | 0 | 3.85 ± 0.11 |
9 | 0 | 0 | −1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 4.35 ± 0.23 |
10 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 4.56 ± 0.13 |
11 | 0 | 1 | −1 | 0 | 1 | 1 | 0 | −1 | 0 | 0 | 5.76 ± 0.47 |
12 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 4.15 ± 0.13 |
13 | 1 | −1 | −1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | 2.81 ± 0.20 |
14 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | 1 | −1 | 2.40 ± 0.04 |
15 | 1 | 0 | −1 | 1 | 0 | 1 | 0 | 0 | −1 | 0 | 3.67 ± 0.23 |
16 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 4.23 ± 0.23 |
17 | 1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | −1 | 5.20 ± 0.10 |
18 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4.37 ± 0.34 |
2.2. Method Validation
Retention time (min) | Calibration | R2 | Linear range (µg/mL) | LOD (µg/mL) | LOQ(µg/mL) |
---|---|---|---|---|---|
26.26 ± 0.12 | y = 1.429x − 1.312 | 0.9994 | 5–1000 | 0.28 | 0.92 |
Precision (n = 5) | Repeatability (n = 3) | Stability (n = 6) | |||
---|---|---|---|---|---|
Content (µg/mL) | RSD (%) | Content (µg/mL) | RSD (%) | Content (µg/mL) | RSD (%) |
21.44 ± 0.09 | 0.42 | 19.60 ± 0.24 | 0.98 | 19.48 ± 0.05 | 0.26 |
Spike concentration (µg/mL) | In sample (before addition) (µg/mL) | Expected (calculated) (µg/mL) | Actual (measured)(µg/mL) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|
5 | 19.60 ± 0.24 | 24.60 | 24.57 ± 0.34 | 99.88 | 1.38 |
10 | 19.60 ± 0.24 | 29.60 | 29.48 ± 0.37 | 99.60 | 1.25 |
15 | 19.60 ± 0.24 | 34.60 | 34.50 ± 0.13 | 99.71 | 0.37 |
2.3. Comparison with Conventional Liquid-Solid Extraction
Conventional heat reflux extraction | MAE 150 W | |||||
---|---|---|---|---|---|---|
Time (min) | 1 | 6 | 15 | 30 | 60 | 6 |
HDG (mg/g DW) | nd | nd | nd | 1.90 ± 0.28 a | 2.60 ± 0.48 b | 5.76 ± 0.47 c |
3. Experimental
3.1. Chemicals and Standards
3.2. Plant Material
3.3. Microwave-Assisted Extraction
3.4. Conventional Solid/Liquid Extraction
3.5. RP-HPLC Analysis
3.6. LC-MS Analysis
3.7. Experimental Design
3.8. Statistical Treatment of Data
4. Conclusions
Acknowledgments
Author contributions
Conflictts of Interest
References
- Oomah, B.D. Flaxseed as a functional food source. J. Agric. Food Chem. 2001, 81, 889–894. [Google Scholar] [CrossRef]
- Bhatty, R.S. Nutrient composition of whole flaxseed and flaxseed meal. In Flaxseed in Human Nutrition; Cunnane, S.C., Thompson, L.U., Eds.; AOCS Press: Champaign, IL, USA, 1995; pp. 22–42. [Google Scholar]
- Hano, C.; Martin, I.; Fliniaux, O.; Legrand, B.; Gutierrez, L.; Arroo, R.R.; Mesnard, F.; Lamblin, F.; Lainé, E. Pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 2006, 224, 1291–1301. [Google Scholar] [CrossRef]
- Struijs, K.; Vincken, J.P.; Verhoef, R.; van Oostveen-van Casteren, W.H.; Voragen, A.G.; Gruppen, H. The flavonoid herbacetin diglucoside as a constituent of the lignan macromolecule from flaxseed hulls. Phytochemistry 2007, 68, 1227–1235. [Google Scholar] [CrossRef]
- Beejmohun, V.; Fliniaux, O.; Grand, E.; Lamblin, F.; Bensaddek, L.; Christen, P.; Kovensky, J.; Fliniaux, M.A.; Mesnard, F. Microwave-assisted extraction of the main phenolic compounds in flaxseed. Phytochem. Anal. 2007, 18, 275–282. [Google Scholar] [CrossRef]
- Renouard, S.; Hano, C.; Corbin, C.; Fliniaux, O.; Lopez, T.; Montguillon, J.; Barakzoy, E.; Mesnard, F.; Lamblin, F.; Lainé, E. Cellulase-assisted release of secoisolariciresinol from extracts of flax (Linum usitatissimum) hulls and whole seeds. Food Chem. 2010, 122, 679–687. [Google Scholar] [CrossRef]
- Prasad, K. Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Circulation 1999, 99, 1355–1362. [Google Scholar] [CrossRef]
- Prasad, K. Suppression of phosphoenolpyruvate carboxykinase gene expression by secoisolariciresinol diglucoside (SDG), a new antidiabetic agent. Int. J. Angiol. 2002, 11, 107–109. [Google Scholar] [CrossRef]
- Lainé, E.; Hano, C.; Lamblin, F. Lignans. In Chemoprevention of Cancer and DNA Damage by Dietary Factors; Knasmüller, S., DeMarini, D.M., Johnson, I.T., Gerhäuser, C., Eds.; Wiley-VCH Editions: Weinheim, Germany, 2009; pp. 555–577. [Google Scholar]
- Hano, C.; Renouard, S.; Molinié, R.; Corbin, C.; Barakzoy, E.; Doussot, J.; Lamblin, F.; Lainé, E. Flaxseed (Linum usitatissimum L.) extract as well as (+)-secoisolariciresinol diglucoside and its mammalian derivatives are potent inhibitors of α-amylase activity. Bioorg. Med. Chem. Lett. 2013, 23, 3007–3012. [Google Scholar] [CrossRef]
- Perez-Vizcaino, F.; Duarte, J. Flavonols and cardiovascular disease. Mol. Aspects Med. 2010, 31, 478–494. [Google Scholar] [CrossRef]
- Leung, L.K.; Po, L.S.; Lau, T.Y.; Yuen, Y.M. Effect of dietary flavonols on oestrogen receptor transactivation and cell death induction. Br. J. Nutr. 2004, 91, 831–839. [Google Scholar] [CrossRef]
- Prasad, S.; Phromnoi, K.; Yadav, V.R.; Chaturvedi, M.M.; Aggarwal, B.B. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Med. 2010, 76, 1044–1063. [Google Scholar] [CrossRef]
- Long, M. The applications of kidney secreted bone growth factor and pharmaceutical use of flavonol and flavonol glycosides for stimulating the secretion of kidney secreted bone growth factor. Canadian Patent 2009 CA 2593623 A1, 9 January 2009. [Google Scholar]
- Jeong, H.J.; Ryu, Y.B.; Park, S.J.; Kim, J.H.; Kwon, H.J.; Kim, J.H.; Park, K.H.; Rho, M.C.; Lee, W.S. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorg. Med. Chem. 2009, 17, 6816–6823. [Google Scholar] [CrossRef]
- Qiu, S.X.; Lu, Z.Z.; Luyengi, L.; Lee, S.K.; Pezzuto, J.M.; Farnsworth, N.R.; Thompson, L.U.; Fong, H.H.S. Isolation and characterization of flaxseed (Linum usitatissimum) constituents. Pharm. Biol. 1999, 37, 1–7. [Google Scholar]
- Degenhardt, A.; Habben, S.; Winterhalter, P. Isolation of the lignan secoisolariciresinol diglucoside from flaxseed (Linum usitatissimum L.) by high-speed counter-current chromatography. J. Chromatogr. A 2002, 943, 299–302. [Google Scholar] [CrossRef]
- Kaufmann, B.; Christen, P. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochem. Anal. 2002, 13, 105–113. [Google Scholar] [CrossRef]
- Waksmundzka-Hajnos, M.; Petruczynik, A.; Dragan, A.; Wianowska, D.; Dawidowicz, A.L. Effect of extraction method on the yield of furanocoumarins from fruits of Archangelica officinalis Hoffm. Phytochem. Anal. 2004, 15, 313–319. [Google Scholar] [CrossRef]
- Canizares-Macias, M.P.; Garcia-Mesa, J.A.; Luque de Castro, M.D. Determination of the oxidative stabiblity of olive oil, using focused-microwave energy to accelerate the oxidation process. Anal. Bioanal. Chem. 2004, 378, 479–483. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef]
- Amakura, Y.; Yoshimura, M.; Yamakami, S.; Yoshida, T.; Wakana, D.; Hyuga, M.; Hyuga, S.; Hanawa, T.; Goda, Y. Characterization of phenolic constituents from Ephedra herb extract. Molecules 2013, 18, 5326–5334. [Google Scholar] [CrossRef]
- Qiao, Y.; Xiang, Q.; Yuan, L.; Xu, L.; Liu, Z.; Liu, X. Herbacetin induces apoptosis in HepG2 cells: Involvements of ROS and PI3K/Akt pathway. Food Chem. Toxicol. 2013, 51, 426–433. [Google Scholar] [CrossRef]
- Gendaram, O.; Choi, Y.H.; Kim, Y.S.; Ryu, S.Y. Anti-oxidative and antibacterial constituents from Sedum hybridum. Nat. Prod. Sci. 2011, 17, 279–284. [Google Scholar]
- Ma, C.; Hu, L.; Fu, Q.; Gu, X.; Tao, G.; Wang, H. Separation of four flavonoidsfrom Rhodiola rosea by on-line combination of sample preparation and counter-current chromatography. J. Chromatogr. A 2013, 1306, 12–19. [Google Scholar]
- Petsalo, A.; Jalonen, J.; Tolonen, A. Identification of flavonoids of Rhodiola rosea by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2006, 1112, 224–231. [Google Scholar]
- Du, M.; Xie, J.-M. Chemical constituents of Rhodiola crenulata. Huaxue Xuebao 1994, 52, 927–931. [Google Scholar]
- Sample Availability: HDG is available from EA1207 (LBLGC) and flaxseed cake is available from EA3900 (BIOPI).
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Fliniaux, O.; Corbin, C.; Ramsay, A.; Renouard, S.; Beejmohun, V.; Doussot, J.; Falguières, A.; Ferroud, C.; Lamblin, F.; Lainé, E.; et al. Microwave-Assisted Extraction of Herbacetin Diglucoside from Flax (Linum usitatissimum L.) Seed Cakes and Its Quantification using an RP-HPLC-UV System. Molecules 2014, 19, 3025-3037. https://doi.org/10.3390/molecules19033025
Fliniaux O, Corbin C, Ramsay A, Renouard S, Beejmohun V, Doussot J, Falguières A, Ferroud C, Lamblin F, Lainé E, et al. Microwave-Assisted Extraction of Herbacetin Diglucoside from Flax (Linum usitatissimum L.) Seed Cakes and Its Quantification using an RP-HPLC-UV System. Molecules. 2014; 19(3):3025-3037. https://doi.org/10.3390/molecules19033025
Chicago/Turabian StyleFliniaux, Ophélie, Cyrielle Corbin, Aina Ramsay, Sullivan Renouard, Vickram Beejmohun, Joël Doussot, Annie Falguières, Clotilde Ferroud, Frédéric Lamblin, Eric Lainé, and et al. 2014. "Microwave-Assisted Extraction of Herbacetin Diglucoside from Flax (Linum usitatissimum L.) Seed Cakes and Its Quantification using an RP-HPLC-UV System" Molecules 19, no. 3: 3025-3037. https://doi.org/10.3390/molecules19033025
APA StyleFliniaux, O., Corbin, C., Ramsay, A., Renouard, S., Beejmohun, V., Doussot, J., Falguières, A., Ferroud, C., Lamblin, F., Lainé, E., Roscher, A., Grand, E., Mesnard, F., & Hano, C. (2014). Microwave-Assisted Extraction of Herbacetin Diglucoside from Flax (Linum usitatissimum L.) Seed Cakes and Its Quantification using an RP-HPLC-UV System. Molecules, 19(3), 3025-3037. https://doi.org/10.3390/molecules19033025