Multielemental Composition of Suet Oil Based on Quantification by Ultrawave/ICP-MS Coupled with Chemometric Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization for SO Ultrawave Digestion by Box-Behnken Design
Steps | Status | Temperature/°C | Time/min |
---|---|---|---|
1 | 1600 W heating | 25–120 | 5 |
2 | Insulation | 120 | 5 |
3 | 1600 W heating | 120–210 | 5 |
4 | Insulation | 210 | 35 |
Response | Final Equation | Std. Dev. | Mean | C.V. % | PRESS | R-Squared |
---|---|---|---|---|---|---|
Pb | Pb = 85.72 + 3.82A + 4.94B + 10.24C − 0.97AB + 2.28AC + 1.05BC − 5.03A2 − 4.68B2 − 4.79C2 | 6.32 | 75.81 | 8.34 | 2913.15 | 0.9021 |
As | As = 83.56 + 4.29A + 2.96B + 11.96C − 1.36AB + 1.69AC − 0.44BC − 3.30A2 − 1.20B2 − 5.46C2 | 5.57 | 76.76 | 7.26 | 2152.43 | 0.9035 |
Hg | Hg = 84.15 + 2.78A + 2.02B + 13.83C + 0.15AB + 1.48AC − 1.62BC − 3.74A2 − 2.89B2 − 5.56C2 | 4.95 | 75.81 | 6.52 | 1632.57 | 0.9341 |
Cd | Cd = 82.92 + 3.13A + 2.37B + 13.21C + 0.30AB + 1.88AC − 1.27BC − 3.40A2 − 3.58B2 − 5.07C2 | 5.88 | 74.69 | 7.87 | 2239.73 | 0.9038 |
Fe | Fe = 81.10 + 1.80A + 1.80B + 11.51C + 1.20AB + 2.23AC + 0.53BC − 1.48A2 − 3.25B2 − 4.19C2 | 4.58 | 75.01 | 6.10 | 1054.59 | 0.9175 |
Cu | Cu = 83.23 + 3.44A + 4.06B + 10.68C − 1.36AB + 2.51AC − 1.36BC − 3.46A2 − 2.27B2 − 4.25C2 | 4.77 | 76.42 | 6.25 | 955.60 | 0.9151 |
Mn | Mn = 85.88 + 5.23A + 4.67B + 10.41C − 0.50AB + 1.60AC − 2.02BC − 4.09A2 − 4.20B2 − 2.82C2 | 5.40 | 78.30 | 6.90 | 1939.88 | 0.9031 |
Ti | Ti = 86.85 + 5.07A + 3.30B + 8.45C + 1.96AB + 1.96AC + 3.11BC − 4.23A2 − 3.47B2 − 2.97C2 | 3.32 | 79.56 | 4.17 | 253.82 | 0.9498 |
Ni | Ni = 89.17 + 7.35A + 3.41B + 9.18C + 0.89AB + 3.39AC − 1.64BC − 6.99A2 − 3.68B2 − 2.36C2 | 3.92 | 80.27 | 4.89 | 726.98 | 0.9517 |
V | V = 87.65 + 7.26A + 2.41B + 9.21C + 0.85AB + 6.05AC − 3.25BC − 5.74A2 − 2.96B2 − 4.18C2 | 3.23 | 78.85 | 4.10 | 789.74 | 0.9671 |
Cr | Cr = 86.95 + 5.05A + 1.37B + 8.23C + 2.34AB + 2.14AC − 0.39BC − 6.88A2 − 2.58B2 − 3.33C2 | 6.02 | 78.22 | 7.70 | 2293.24 | 0.9060 |
Na | Na = 73.30 + 2.44A + 4.97B + 10.24C − 0.075AB + 3.30AC + 2.08BC − 10.32A2 + 0.30B2 − 4.91C2 | 5.70 | 63.11 | 9.04 | 2112.79 | 0.9205 |
K | K = 71.15 + 0.54A + 2.90B + 9.96C − 2.14AB + 3.66AC + 2.99BC − 9.80A2 + 0.29B2 − 5.65C2 | 6.64 | 60.80 | 10.92 | 3005.07 | 0.9062 |
Ca | Ca = 78.15 + 1.02A + 0.82B + 8.36C + 1.79AB − 2.49AC + 2.54BC − 7.43A2 − 1.53B2 − 4.41C2 | 4.92 | 69.03 | 7.12 | 1449.21 | 0. 9176 |
Elements | Linear equation | Linearity range μg/L | r | LOD μg/kg | LOQ μg/kg | Precision (RSD, n = 6) % | Repeatability (RSD, n = 6) % | Recovery (%) | |
---|---|---|---|---|---|---|---|---|---|
Intraday | Interday | ||||||||
Pb | Y = 66211X | 0–10 | 0.9998 | 0.005 | 0.353 | 1.23 | 1.56 | 2.36 | 97.8 |
As | Y = 1487.9X | 0–5000 | 1.0000 | 0.02 | 2.56 | 2.31 | 2.43 | 2.07 | 98.6 |
Hg | Y = 6572.3X | 0–10 | 1.0000 | 0.004 | 0.708 | 1.43 | 1.63 | 3.24 | 96.4 |
Cd | Y = 3955.5X | 0–10 | 1.0000 | 0.002 | 0.335 | 2.03 | 2.34 | 2.78 | 98.3 |
Fe | Y = 215.19X | 0–5000 | 0.9981 | 0.09 | 3.64 | 1.78 | 2.44 | 2.78 | 97.4 |
Cu | Y = 14242 X | 0–10 | 0.9996 | 0.008 | 3.091 | 2.58 | 1.96 | 3.35 | 88.7 |
Mn | Y = 7966.1X | 0–50 | 1.0000 | 0.02 | 5.18 | 2.32 | 2.55 | 2.23 | 93.8 |
Ti | Y = 168.39X | 0–500 | 0.9993 | 0.2 | 5.8 | 1.73 | 2.05 | 2.19 | 86.5 |
Ni | Y = 10693X | 0–50 | 0.9982 | 0.009 | 5.668 | 1.99 | 2.57 | 2.47 | 90.4 |
V | Y = 9399.3X | 0–10 | 1.0000 | 0.003 | 2.608 | 2.27 | 2.79 | 2.94 | 96.5 |
Cr | Y = 1441.2X | 0–50 | 1.0000 | 0.002 | 6.088 | 1.66 | 2.16 | 2.38 | 99.2 |
Na | Y = 45249X | 0–5000 | 0.9988 | 0.2 | 9.1 | 1.07 | 2.76 | 3.76 | 89.7 |
K | Y = 15646X | 0–5000 | 0.9979 | 0.6 | 8.1 | 2.06 | 2.37 | 2.89 | 90.2 |
Ca | Y = 51.87X | 0–500 | 0.9975 | 0.3 | 5.1 | 1.65 | 2.39 | 3.25 | 87.9 |
2.2. Application to Multielemental Analysis in SO
Origins | Batches | Content (mean ± SD, mg/kg) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | As | Cd | Hg | Cu | Na | K | Ca | Ti | V | Cr | Mn | Fe | Ni | ||
Anhui | 1 | 0.0015 ± 0.0008 | 0.013 ± 0.005 | nd | 0.004 ± 0.001 | 0.82 ± 0.01 | 817 ± 4 | 584 ± 5 | 80 ± 4 | 21 ± 1 | 0.274 ± 0.007 | 9.81 ± 0.03 | 2.03 ± 0.03 | 224 ± 5 | 2.45 ± 0.06 |
2 | 0.18 ± 0.01 | 0.093 ± 0.006 | nd | 0.0040 ± 0.0003 | 1.11 ± 0.09 | 386 ± 5 | 248 ± 6 | 29 ± 1 | 7.8 ± 0.1 | 0.14 ± 0.01 | 8.94 ± 0.04 | 1.03 ± 0.02 | 148 ± 6 | 1.02 ± 0.05 | |
3 | 0.20 ± 0.01 | 0.035 ± 0.007 | nd | 0.0030 ± 0.0001 | 1.45 ± 0.02 | 411 ± 6 | 314 ± 8 | 34 ± 4 | 8.07 ± 0.04 | 0.15 ± 0.01 | 8.0 ± 0.1 | 1.16 ± 0.01 | 145 ± 3 | 1.02 ± 0.01 | |
4 | 0.11 ± 0.01 | 0.026 ± 0.004 | nd | 0.0020 ± 0.0001 | 0.43 ± 0.01 | 323 ± 3 | 206 ± 6 | 24 ± 2 | 5.60 ± 0.06 | 0.113 ± 0.006 | 7.90 ± 0.05 | 0.816 ± 0.008 | 120 ± 5 | 0.94 ± 0.01 | |
5 | 0.70 ± 0.03 | 784 ± 8 | 0.012 ± 0.001 | 0.0002 ± 0.0001 | 0.276 ± 0.004 | 360 ± 4 | 214 ± 5 | 26 ± 3 | 8.79 ± 0.07 | 0.150 ± 0.004 | 7.9 ± 0.1 | 1.02 ± 0.01 | 179 ± 7 | 0.593 ± 0.008 | |
6 | 0.13 ± 0.01 | 561 ± 11 | 0.0010 ± 0.0003 | 0.0015 ± 0.0001 | 0.239 ± 0.008 | 632 ± 4 | 444 ± 9 | 59 ± 4 | 19.4 ± 0.1 | 0.172 ± 0.003 | 4.07 ± 0.05 | 1.88 ± 0.02 | 181 ± 4 | 3.79 ± 0.07 | |
Qinghai | 7 | 1.4 ± 0.1 | 0.34 ± 0.02 | 0.030 ± 0.006 | 0.025 ± 0.001 | 1.34 ± 0.02 | 580 ± 7 | 392 ± 7 | 50 ± 2 | 11.61 ± 0.01 | 0.194 ± 0.002 | 7.72 ± 0.03 | 1.36 ± 0.02 | 157 ± 4 | 1.42 ± 0.02 |
8 | 0.8 ± 0.1 | 0.26 ± 0.02 | 0.016 ± 0.002 | 0.015 ± 0.001 | 0.90 ± 0.02 | 703 ± 8 | 488 ± 7 | 59 ± 3 | 18.57 ± 0.08 | 0.162 ± 0.004 | 4.00 ± 0.06 | 1.68 ± 0.02 | 188 ± 2 | 2.38 ± 0.02 | |
9 | 1.3 ± 0.1 | 0.31 ± 0.02 | 0.020 ± 0.003 | 0.020 ± 0.001 | 1.21 ± 0.01 | 291 ± 5 | 147 ± 5 | 26 ± 1 | 5.76 ± 0.08 | 0.084 ± 0.005 | 4.356 ± 0.002 | 0.91 ± 0.02 | 93.1 ± 0.2 | 0.59 ± 0.03 | |
10 | 1.4 ± 0.1 | 0.30 ± 0.02 | 0.027 ± 0.003 | 0.018 ± 0.001 | 1.49 ± 0.02 | 320 ± 5 | 159 ± 5 | 29 ± 3 | 4.82 ± 0.07 | 0.224 ± 0.009 | 6.570 ± 0.002 | 0.91 ± 0.01 | 151 ± 3 | 2.52 ± 0.02 | |
11 | 1.2 ± 0.1 | 0.273 ± 0.008 | 0.021 ± 0.001 | 0.0165 ± 0.0004 | 1.606 ± 0.006 | 426 ± 5 | 253 ± 6 | 41 ± 3 | 8.2 ± 0.1 | 0.142 ± 0.001 | 7.074 ± 0.006 | 1.04 ± 0.01 | 126 ± 2 | 0.99 ± 0.01 | |
Jiangsu | 12 | 0.9 ± 0.1 | 0.104 ± 0.009 | 0.013 ± 0.001 | 0.013 ± 0.001 | 0.844 ± 0.006 | 296 ± 8 | 170 ± 6 | 27 ± 2 | 6.17 ± 0.04 | 0.1005 ± 0.0008 | 7.12 ± 0.04 | 0.79 ± 0.01 | 90.9 ± 0.8 | 2.74 ± 0.03 |
13 | 0.8 ± 0.1 | 0.04 ± 0.01 | 0.003 ± 0.001 | 0.0095 ± 0.0002 | 0.589 ± 0.009 | 306 ± 6 | 170 ± 6 | 22 ± 1 | 4.95 ± 0.04 | 0.099 ± 0.008 | 7.158 ± 0.013 | 0.72 ± 0.05 | 89 ± 2 | 0.86 ± 0.04 | |
14 | 1.2 ± 0.1 | 0.226 ± 0.006 | nd | 0.023 ± 0.002 | 0.90 ± 0.01 | 246 ± 6 | 127 ± 7 | 23 ± 1 | 4.16 ± 0.03 | 0.095 ± 0.002 | 6.08 ± 0.04 | 0.73 ± 0.05 | 83 ± 1 | 0.52 ± 0.02 | |
15 | 0.8 ± 0.1 | 0.21 ± 0.02 | 0.0055 ± 0.0003 | 0.0065 ± 0.0002 | 0.586 ± 0.007 | 196 ± 5 | 94 ± 2 | 18 ± 2 | 4.55 ± 0.04 | 0.079 ± 0.003 | 5.15 ± 0.03 | 0.62 ± 0.06 | 79 ± 2 | nd | |
16 | 0.7 ± 0.1 | 0.212 ± 0.008 | 0.0030 ± 0.0008 | 0.0090 ± 0.0008 | 0.53 ± 0.01 | 264 ± 5 | 122 ± 3 | 22 ± 2 | 3.81 ± 0.02 | 0.092 ± 0.002 | 5.96 ± 0.04 | 0.62 ± 0.01 | 83.8 ± 0.5 | 0.134 ± 0.002 | |
17 | 0.70 ± 0.07 | 0.12 ± 0.01 | 0.0030 ± 0.0008 | 0.0085 ± 0.0003 | 0.756 ± 0.007 | 301 ± 6 | 141 ± 2 | 28 ± 2 | 4.10 ± 0.04 | 0.094 ± 0.004 | 5.98 ± 0.06 | 0.753 ± 0.006 | 85.8 ± 0.4 | 1.22 ± 0.01 | |
18 | 0.91 ± 0.08 | 0.041 ± 0.006 | 0.006 ± 0.001 | 0.0095 ± 0.0004 | 0.620 ± 0.004 | 294 ± 4 | 141 ± 3 | 22 ± 2 | 4.0 ± 0.2 | 0.086 ± 0.002 | 5.92 ± 0.02 | 0.61 ± 0.01 | 71.6 ± 0.8 | nd |
2.3. PCA of the SO Samples
Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | ||||
---|---|---|---|---|---|---|
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
1 | 7.209 | 51.491 | 51.491 | 7.209 | 51.491 | 51.491 |
2 | 3.160 | 22.572 | 74.062 | 3.160 | 22.572 | 74.062 |
3 | 1.482 | 10.586 | 84.649 | 1.482 | 10.586 | 84.649 |
4 | 0.951 | 6.794 | 91.443 | |||
5 | 0.479 | 3.423 | 94.866 | |||
6 | 0.301 | 2.153 | 97.019 | |||
7 | 0.179 | 1.280 | 98.299 | |||
8 | 0.134 | 0.960 | 99.259 | |||
9 | 0.059 | 0.418 | 99.677 | |||
10 | 0.019 | 0.133 | 99.810 | |||
11 | 0.014 | 0.102 | 99.913 | |||
12 | 0.008 | 0.060 | 99.973 | |||
13 | 0.003 | 0.018 | 99.991 | |||
14 | 0.001 | 0.009 | 100.000 |
Elements | Component | ||
---|---|---|---|
1 | 2 | 3 | |
Pb | −0.440 | 0.825 | 0.251 |
As | 0.294 | −0.400 | 0.563 |
Cd | 0.032 | 0.869 | 0.205 |
Hg | −0.232 | 0.902 | 0.108 |
Cu | 0.018 | 0.776 | −0.469 |
Na | 0.966 | 0.112 | 0.001 |
K | 0.970 | 0.057 | −0.042 |
Ca | 0.955 | 0.152 | −0.005 |
Ti | 0.965 | −0.012 | 0.166 |
V | 0.851 | 0.253 | −0.220 |
Cr | 0.226 | −0.159 | −0.825 |
Mn | 0.982 | 0.055 | 0.089 |
Fe | 0.939 | 0.023 | −0.039 |
Ni | 0.732 | 0.132 | 0.244 |
3. Experimental
3.1. General Information
3.2. Instrumentation
3.3. Reagents and Analytical Solutions
3.4. Samples
3.5. Sample Preparation Procedure
3.6. PCA for SO Samples
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Raman, P.; Patino, L.C.; Nair, M.G. Evaluation of metal and microbial contamination in botanical supplements. J. Agric. Food Chem. 2004, 52, 7822–7827. [Google Scholar]
- Ong, E.S.; Yong, Y.L.; Woo, S.O. Determination of lead in botanicals/Chinese prepared medicines by using microwave digestion with flow injection-inductively coupled plasma-mass spectrometry. J. AOAC Int. 2000, 83, 382–389. [Google Scholar]
- López, A.M.; Prieto, M.F.; Miranda, M.; Castillo, C.; Hernández, J.; Luis, B.J. Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain. Biometals 2004, 17, 389–397. [Google Scholar] [CrossRef]
- Perelló, G.; Martícid, R.; Llobet, J.M.; Domingo, J.L. Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. J. Agric. Food Chem. 2008, 56, 11262–11269. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, J.; Deng, Z.; Wu, H.; Deng, Q.; Tan, H.; Cao, L. Isolation and characterization of fatty acid methyl ester (FAME)-producing Streptomyces sp. S161 from sheep (Ovis aries) faeces. Lett. Appl. Microbiol. 2013, 57, 200–205. [Google Scholar] [CrossRef]
- Mattacks, C.A.; Sadler, D.; Pond, C.M. Site-specific differences in the action of NRTI drugs on adipose tissue incubated in vitro with lymphoid cells, and their interaction with dietary lipids. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2003, 135, 11–29. [Google Scholar] [CrossRef]
- Pond, C.M.; Mattacks, C.A. The source of fatty acids incorporated into proliferating lymphoid cells in immune-stimulated lymph nodes. Br. J. Nutr. 2003, 89, 375–383. [Google Scholar] [CrossRef]
- Cui, L.; Sun, E.; Zhang, Z.H.; Tan, X.B.; Wei, Y.J.; Jin, X.; Jia, X.B. Enhancement of epimedium fried with suet oil based on in vivo formation of self-assembled flavonoid compound nanomicelles. Molecules 2012, 17, 12984–12996. [Google Scholar] [CrossRef]
- Editorial Committee of Pharmacopoeia of Ministry of Health PR China. The Pharmacopeoia of People’s Republic of China; China Chemical Industry Press: Beijing, China, 2010; pp. 306–308. [Google Scholar]
- Vanhasselt, P.M.; Janssens, G.E.; Slot, T.K.; Vander, H.M.; Minderhoud, T.C.; Talelli, M.; Akkermans, L.M.; Rijcken, C.J.; van Nostrum, C.F. The influence of bile acids on the oral bioavailability of vitamin K encapsulated in polymeric micelles. J. Control. Release 2008, 133, 161–168. [Google Scholar]
- Jiang, L.; Wang, K.; Deng, M.; Wang, Y.; Huang, J. Bile salt-induced vesicle-to-micelle transition in catanionic surfactant systems: Steric and electrostatic interactions. Langmuir 2008, 24, 4600–4606. [Google Scholar] [CrossRef]
- Shen, X.; Huang, W.; Yao, C.; Ying, S. Influence of metal ion on sorption of p-nitrophenol onto sediment in the presence of cetylpyridinium chloride. Chemosphere 2007, 67, 1927–1932. [Google Scholar] [CrossRef]
- Das, P.; Mallick, A.; Sarkar, D.; Chattopadhyay, N. Application of anionic micelle for dramatic enhancement in the quenching-based metal ion fluorosensing. J. Colloid Interface Sci. 2008, 320, 9–14. [Google Scholar] [CrossRef]
- Gholivand, M.B.; Babakhanian, A.; Rafiee, E. Determination of Sn(II) and Sn(IV) after mixed micelle-mediated cloud point extraction using alpha-polyoxometalate as a complexing agent by flame atomic absorption spectrometry. Talanta 2008, 76, 503–508. [Google Scholar] [CrossRef]
- Mu, J.H.; Li, G.Z. The formation of wormlike micelles in anionic surfactant aqueous solutions in the presence of bivalent counterion. Chem. Phys. Lett. 2001, 345, 100–104. [Google Scholar] [CrossRef]
- Vonderheide, A.P.; Sadi, B.B.M.; Sutton, K.L.; Shann, J.R.; Caruso, J.A. Inductively Coupled Plasma Spectrometry and Its Application; Blackwell Publishing Ltd.: Oxford, UK, 2007; pp. 338–361. [Google Scholar]
- Taylor, H.E.; Huff, R.A.; Montaser, A. Inductively Coupled Plasma Spectrometry; Wiley-VCH Inc.: Danvers, MA, USA, 1998; pp. 721–765. [Google Scholar]
- Sucharová, J.; Suchara, I. Determination of 36 elements in plant reference materials with different Si contents by inductively coupled plasma mass spectrometry: comparison of microwave digestions assisted by three types of digestion mixtures. Anal. Chim. Acta 2006, 576, 163–176. [Google Scholar] [CrossRef]
- Abusamra, A.; Morris, J.S.; Koirtyohann, S.R. Wet ashing of some biological samples in a microwave oven. Anal. Chem. 1975, 47, 1475–1477. [Google Scholar] [CrossRef]
- Suoranta, T.; Niemelä, M.; Perämäki, P. Comparison of digestion methods for the determination of ruthenium in catalyst materials. Talanta 2014, 119, 425–429. [Google Scholar] [CrossRef]
- Box, G.E.P.; Wlson, K.B. On the experimental attainment of optimum conditions. J. Roy. Statist. Soc. Ser. B Metho. 1951, 13, 1–45. [Google Scholar]
- Luo, C.; Chen, Y.S. Optimization of extraction technology of Se-enriched Hericium erinaceum polysaccharides by Box–Behnken statistical design and its inhibition against metal elements loss in skull. Carbohydr. Polym. 2010, 82, 845–860. [Google Scholar]
- Sample Availability: Samples of the elements Pb, As, Hg, Cd, Fe, Cu, Mn, Ti, Ni, V, Sr, Na, Ka and Ca are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Jiang, J.; Feng, L.; Li, J.; Sun, E.; Ding, S.-M.; Jia, X.-B. Multielemental Composition of Suet Oil Based on Quantification by Ultrawave/ICP-MS Coupled with Chemometric Analysis. Molecules 2014, 19, 4452-4465. https://doi.org/10.3390/molecules19044452
Jiang J, Feng L, Li J, Sun E, Ding S-M, Jia X-B. Multielemental Composition of Suet Oil Based on Quantification by Ultrawave/ICP-MS Coupled with Chemometric Analysis. Molecules. 2014; 19(4):4452-4465. https://doi.org/10.3390/molecules19044452
Chicago/Turabian StyleJiang, Jun, Liang Feng, Jie Li, E Sun, Shu-Min Ding, and Xiao-Bin Jia. 2014. "Multielemental Composition of Suet Oil Based on Quantification by Ultrawave/ICP-MS Coupled with Chemometric Analysis" Molecules 19, no. 4: 4452-4465. https://doi.org/10.3390/molecules19044452
APA StyleJiang, J., Feng, L., Li, J., Sun, E., Ding, S.-M., & Jia, X.-B. (2014). Multielemental Composition of Suet Oil Based on Quantification by Ultrawave/ICP-MS Coupled with Chemometric Analysis. Molecules, 19(4), 4452-4465. https://doi.org/10.3390/molecules19044452