Berberine Enhances the Antibacterial Activity of Selected Antibiotics against Coagulase-Negative Staphylococcus Strains in Vitro
Abstract
:1. Introduction
2. Results and Discussion
2.1. Activity of the Berberine
Bacterial strain | MIC (µg/mL) |
---|---|
S. epidermidis ATCC 12228 | 32 |
S. epidermidis ATCC 35983 | 128 |
S. haemolyticus ATCC 29970 | 256 |
S. hominis subsp. hominis ATCC27844 | 64 |
S. warneri ATCC 49454 | 512 |
S. saprophyticus ATTC 15303 | 512 |
S. capitis subsp. capitis ATCC 35661 | 16 |
S. intermedius ATCC29663 | 64 |
S. lentus ATCC 700403 | 64 |
S. lugdunensis ATCC 49576 | 64 |
S. simulans ATCC 27851 | 128 |
S. galinarium ATCC 700401 | 128 |
S. sciuri ATCC 29060 | 128 |
S. xylosus ATCC 700404 | 128 |
2.2. Time-Kill Assay
Factors | df | Sum of Squares | Mean Squares | F | % of Variance | p |
---|---|---|---|---|---|---|
strain (S) | 13 | 26.8035 | 2.0618 | 6016 | 7.43 | <0.001 |
time (T) | 4 | 246.5799 | 61.6450 | 179878 | 68.35 | <0.001 |
concentration (C) | 11 | 21.7349 | 1.9759 | 5766 | 6.03 | <0.001 |
SxT | 52 | 24.9890 | 0.4806 | 1402 | 6.93 | <0.001 |
SxC | 143 | 8.8737 | 0.0621 | 181 | 2.46 | <0.001 |
TxC | 44 | 17.4305 | 0.3961 | 1156 | 4.83 | <0.001 |
SxTxC | 572 | 13.4642 | 0.0235 | 69 | 3.73 | <0.001 |
2.3. Effects of Combinations of Berberine and Antibiotics against CoNS
Strain | P | P | E | E | DA | DA | FOX | FOX | CIP | CIP | TOB | TOB | C | C | LIN | LIN | TE | TE | SXT | SXT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
+be | +be | +be | +be | +be | +be | +be | +be | +be | +be | |||||||||||
S. epidermidis ATCC35983 | 0 | 0 | 0 | 0 | 0 | 0 | 12 ± 2 | 18 ± 2 | 30 ± 2 | 32 ± 2 | 17 | 18 ± 2 | 23 ± 2 | 26 ± 2 | 30 ± 3 | 33 ± 1 | 27 ± 1 | 29 ± 1 | 29 ± 1 | 31 ± 1 |
S. epidermidis ATCC12228 | 12 ± 2 | 22 ±1 | 27 ± 1 | 41 ± 1 | 27 ± 1 | 35 ± 1 | 34 ± 3 | 36 ± 2 | 28 ± 1 | 27 ± 1 | 27 ± 2 | 41 ± 1 | 28 ± 1 | 39 ± 1 | 33 ± 2 | 44 ± 2 | 0 | 9 ± 3 | 23 ± 2 | 23 ± 2 |
S. haitalicolyticus ATCC29970 | 33 ± 1 | 46 ± 2 | 26 ± 2 | 35 ± 3 | 26 ± 1 | 37 ± 1 | 33 ± 1 | 47 ± 3 | 30 ± 1 | 39 ± 1 | 26 ± 1 | 40 ± 1 | 27 ± 1 | 41 ± 3 | 31 ± 2 | 45 ± 1 | 30 ± 1 | 48 ± 2 | 22 | 40 |
S. hominis subsp. hominis ATCC27844 | 34 ± 2 | 38 ± 1 | 34 ± 2 | 40 | 29 ± 1 | 34 ± 2 | 32 | 41 ± 1 | 31 ± 2 | 33 ± 1 | 27 ± 1 | 30 ± 2 | 30 ± 2 | 35 ± 1 | 34 ± 3 | 45 ± 3 | 11 ± 1 | 12 ± 2 | 32 | 33 ± 1 |
S. warneri ATCC49454 | 31 ± 2 | 31 ± 3 | 24 ± 2 | 26 ± 1 | 28 ± 2 | 28 | 32 | 37 ± 1 | 27 ± 1 | 30 ± 2 | 25 ± 1 | 26 | 26 ± 2 | 29 ± 3 | 31 ± 2 | 33 ± 2 | 31 ± 3 | 33 ± 1 | 31 ± 1 | 33 ± 2 |
S. saprophyticus ATTC15303 | 27 ± 1 | 29 | 29 ± 1 | 32 ± 1 | 28 | 33 ± 1 | 31 ± 1 | 32 ± 1 | 27 ± 1 | 28 | 28 ± 1 | 32 ± 1 | 28 ± 2 | 29 ± 1 | 33 ± 2 | 36 ± 1 | 32 ± 2 | 37 ± 2 | 32 ± 2 | 33 ± 1 |
S. capitis subsp. capitis ATCC35661 | 32 ± 3 | 35 ± 2 | 24 ± 1 | 31 ± 1 | 29 ± 1 | 31 ± 1 | 31 ± 1 | 36 ± 1 | 29 ± 1 | 32 ± 2 | 27 ± 1 | 33 ± 1 | 30 ± 1 | 38 ± 2 | 32 ± 2 | 37 ± 1 | 33 ± 2 | 37 ± 2 | 31 ± 2 | 36 ± 2 |
S. intermedius ATCC29663 | 38 ± 2 | 42 ± 2 | 29 ± 1 | 35 ± 2 | 30 ± 3 | 32 ± 2 | 35 ± 1 | 37 ± 1 | 30 ± 2 | 31 ± 3 | 27 ± 1 | 29 ± 1 | 28 ± 1 | 31 ± 1 | 31 ± 1 | 34 ± 1 | 33 ± 1 | 36 ± 1 | 28 ± 1 | 32 ± 2 |
S. lentus ATCC700403 | 24 ± 1 | 30 ± 3 | 25 ± 1 | 27 ± 1 | 22 ± 2 | 23 ± 1 | 34 | 39 ± 2 | 28 ± 2 | 27 ± 3 | 23 ± 3 | 25 ± 2 | 30 ± 1 | 30 ± 3 | 33 ± 1 | 35 ± 2 | 27 ± 2 | 31 ± 1 | 26 ± 2 | 28 ± 3 |
S. lugdunensis ATCC49576 | 12 ± 1 | 15 ± 1 | 29 ± 1 | 33 ± 3 | 29 ± 2 | 33 ± 2 | 35 ± 2 | 38 ± 2 | 31 ± 3 | 34 ± 3 | 24 ± 2 | 30 ± 2 | 28 ± 2 | 29 ± 2 | 30 ± 1 | 33 ± 1 | 33 ± 1 | 37 ± 1 | 28 ± 2 | 30 ± 1 |
S. simulans ATCC27851 | 19 ± 3 | 21 ± 3 | 31 ± 1 | 35 ± 1 | 31 ± 1 | 36 ± 3 | 36 ± 3 | 37 ± 2 | 36 | 37 ± 1 | 29 ± 2 | 31 ± 3 | 29 ± 1 | 33 ± 3 | 32 ± 1 | 36 ± 2 | 12 | 16 ± 1 | 28 ± 2 | 27 ± 1 |
S. galinarium ATCC700401 | 9 | 13 ± 1 | 25 ± 1 | 33 ± 1 | 21 ± 1 | 27 ± 1 | 20 ± 1 | 27 ± 1 | 27 ± 1 | 30 ± 0 | 24 ± 1 | 30 ± 2 | 26 ± 1 | 31 ± 1 | 29 ± 1 | 34 ± 2 | 9 ± 1 | 11 ± 1 | 27 ± 1 | 27 ± 1 |
S. sciuri ATCC29060 | 24 ± 1 | 27 ± 2 | 24 ± 1 | 27 | 24 ± 1 | 26 ± 1 | 28 | 32 ± 2 | 26 ± 1 | 26 ± 1 | 22 ± 1 | 24 ± 1 | 26 ± 1 | 29 ± 1 | 30 ± 1 | 33 ± 1 | 27 ± 1 | 31 ± 1 | 23 ± 1 | 23 ± 1 |
S. xylosus ATCC700404 | 9 ± 2 | 12 ± 1 | 0 | 0 | 0 | 0 | 37 ± 1 | 39 ± 1 | 30 ± 1 | 30 ± 2 | 19 ± 1 | 20 ± 1 | 28 ± 2 | 30 ± 2 | 32 ± 1 | 35 ± 1 | 14 ± 1 | 16 ± 1 | 32 ± 2 | 32 ± 2 |
average | 22 ± 1 | 26 ± 1 | 23 ± 1 | 28 ± 1 | 23 ± 1 | 27 ± 1 | 31 ± 1 | 36 ± 2 | 29 ± 1 | 31 ± 1 | 25 ± 1 | 29 ± 1 | 28 ± 1 | 32 ± 2 | 32 ± 2 | 37 ± 1 | 23 ± 1 | 27 ± 1 | 28 ± 1 | 31 ± 1 |
Antibiotic(Inhibition Growth Zone in mm ± SD) | Antibiotic with Berberine(Inhibition Growth Zone in mm ± SD) | Pearson Correlation | |
---|---|---|---|
LIN | 32 ± 2 | 37 ± 1 | r = 0.62 |
FOX | 31 ± 1 | 36 ± 2 | r = 0.86 |
E | 23 ± 1 | 28 ± 1 | r = 0.97 |
P | 22 ± 1 | 26 ± 1 | r = 0.93 |
DA | 23 ± 1 | 27 ± 1 | r = 0.97 |
TOB | 25 ± 1 | 29 ± 1 | r = 0.77 |
C | 28 ± 1 | 32 ± 2 | r = 0.42 |
TE | 23 ± 1 | 27 ± 1 | r = 0.94 |
CIP | 29 ± 1 | 31 ± 1 | r = 0.73 |
STX | 28 ± 1 | 31 ± 1 | r = 0.34 |
3. Experimental
3.1. Bacterial Strains, Media and Reagents
3.2. Microdilution Method
3.3. Disk Diffusion Method
3.4. Statistical Analyses
4. Conclusions
Author Contributions
Conflicts of Interest
References
- ECDC/EMEA Joint Technical Report: The bacterial challenge: Time to react. ECDC/EMEA: Stockholm, Sweden. 2009. Available online: http://www.ecdc.europa.eu/en/publications/Publications/Forms/ECDC DispForm.aspx?ID=444 (accessed on 17 September 2009).
- Vuong, C.; Otto, M. Staphylococcus epidermidis infections. Microbes Infect. 2002, 4, 481–489. [Google Scholar] [CrossRef]
- Kloos, W.; Schleifer, K.H. Staphylococcus. In Bergey’s Manual of Systematic Bacteriology; Sneath, P.H.A., Ed.; Williams & Wilkins: Baltimore, MD, USA, 1986; volume 2, pp. 1013–1035. [Google Scholar]
- Imanshahidi, M.; Hosseinzadeh, H. Pharmacological and therapeutic effects of Berberis. vulgaris and its active constituent. Phytother. Res. 2008, 22, 999–1012. [Google Scholar] [CrossRef]
- Tillhon, M.; Guman Ortiz, L.M.; Lombardi, P.; Scovassi, A.I. Berberine: New perspectives for old remedies. Biochem. Pharmacol. 2012, 84, 1260–1267. [Google Scholar] [CrossRef]
- Singh, A.; Duggal, S.; Kaur, N.; Singh, J. Berberine: Alkaloid with wide spectrum of pharmacological activities. J. Nat. Prod. 2010, 3, 64–75. [Google Scholar]
- Vuddanda, P.R.; Chakraborty, S.; Singh, S. Berberine: A potential phytochemical with multispectrum therapeutic activities. Expert Opin. Inv. Drug. 2010, 19, 1297–1307. [Google Scholar] [CrossRef]
- Birdsall, T.C.; Kelly, G.S. Berberine: Therapeutic potential of an alkaloid found in several medicinal plants. Altern. Med. Rev. 1997, 2, 94–103. [Google Scholar]
- Jin, J.L.; Hua, G.G.; Meng, Z.; Gao, P.J. Antibacterial mechanisms of berberine and reasons for little resistance of bacteria. Chin. Herb. Med. 2010, 3, 27–35. [Google Scholar]
- erňákowá, M.; Koštalová, D. Antimicrobial activity of berberine—a constituent of Mahonia. aquifolium. Folia Microbiol. 2002, 47, 375–378. [Google Scholar] [CrossRef]
- Mantena, S.K.; Sharma, S.D.; Katiyar, S.K. Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in humane prostate carcinoma cell. Mol. Cancer Ther. 2006, 5, 296–308. [Google Scholar] [CrossRef]
- Zeng, X.H.; Zeng, X.J.; Li, Y.Y. Efficacy and safety of berberine for congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 2003, 93, 173–176. [Google Scholar] [CrossRef]
- Yu, H.H.; Kim, K.J.; Cha, J.D.; Kim, H.K.; Lee, Y.E.; Choi, N.Y.; You, Y.O. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J. Med. Food 2005, 8, 454–461. [Google Scholar] [CrossRef]
- Song, W.; Woo, H.J.; Kim, J.S.; Lee, K.M. In vitro activity of β-lactams, in combination with other antimicrobial agents against resistant strains of Pseudomonas aeruginosa. Int. J. Antimicrobial Agents 2003, 21, 8–12. [Google Scholar] [CrossRef]
- Freilea, M.L.; Giannini, F.; Pucci, G.; Sturniolo, A.; Rodero, L.; Pucci, O.; Balzareti, V.; Enriz, R.D. Antimicrobial activity of aqueous extracts and of berberine isolated from Berberis. heterophylla. Fitoterapia 2003, 74, 602–705. [Google Scholar]
- Li, A.R.; Zhu, Y.; Li, X.N.; Tian, X.J. Antimicrobial activity of four species of Berberidaceae. Fitoterapia 2007, 78, 379–381. [Google Scholar] [CrossRef]
- Zuo, G.Y.; Li, Y.; Han, J.; Wang, G.C.; Zhang, Y.L.; Bian, Z.Q. Antibacterial and synergy of berberines with antibacterial agents against clinical multi-drug resistant isolates of Methicillin-Resistant Staphylococcus aureus (MRSA). Molecules 2012, 17, 10322–10330. [Google Scholar] [CrossRef]
- Musumeci, R.; Speciale, A.; Costanzo, R.; Annino, A.; Ragusa, S.; Rapisarda, A.; Pappalardo, M.S.; Iauk, L. Berberis aetnensis C. Presl. extracts: Antimicrobial properties and interaction with ciprofloxacin. Int. J. Antimicrobial Agents 2003, 22, 48–53. [Google Scholar] [CrossRef]
- Wojtyczka, R.D.; Kępa, M.; Idzik, D.; Kubina, R.; Kabała-Dzik, A.; Dziedzic, A.; Wąsik, T.J. In vitro antimicrobial activity of ethanolic extract of Polish propolis against biofilm forming Staphylococcus epidermidis strains. Evid-Based Complement. Alternat. Med. 2013. [Google Scholar] [CrossRef]
- Wojtyczka, R.D.; Dziedzic, A.; Idzik, D.; Kępa, M.; Kubina, R.; Kabała-Dzik, A.; Smoleń-Dzirba, J.; Stojko, J.; Sajewicz, M.; Wąsik, T.J. Susceptibility of Staphylococcus aureus clinical isolates to propolis extract alone or in combination with antimicrobial drugs. Molecules 2013, 18, 9623–9640. [Google Scholar] [CrossRef]
- Wang, X.; Yao, X.; Zhu, Z.; Tang, T.; Dai, K.; Sadovskaya, I.; Flahaut, S.; Jabbouri, S. Effect of berberine on Staphylococcus epidermidis biofilm formation. Int. J. Antimicrobial Agents 2009, 34, 60–66. [Google Scholar] [CrossRef]
- Chan, B.C.; Ip, M.; Lau, C.B.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Litaudon, M.; Reiner, N.E.; Gong, H.; See, R.H.; et al. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol. 2011, 137, 767–773. [Google Scholar] [CrossRef]
- Sato, Y.; Shibata, H.; Arai, T.; Yamamoto, A.; Okimura, Y.; Arakaki, N.; Higuti, T. Variation in synergistic activity by flavone and its related compounds on the increased susceptibility of various strains of methicillin-resistant Staphylococcus aureus to beta-lactam antibiotics. Int. J. Antimicrobial Agents 2004, 24, 226–233. [Google Scholar] [CrossRef]
- Petersen, P.J.; Labthavikul, P.; Jones, C.H.; Bradford, P.A. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J. Antimicrob. Chemother. 2006, 57, 573–576. [Google Scholar] [CrossRef]
- Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 2009, 16, 97–110. [Google Scholar] [CrossRef]
- Stermitz, F.R.; Lorenz, P.; Tawara, J.N.; Zenewicz, L.A.; Lewis, K. Synergy in a medicinal plant: Antimicrobial action of berberine potentiated by 5''-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. USA 2000, 97, 1433–1437. [Google Scholar] [CrossRef]
- Ettefagh, K.A.; Burns, J.T.; Junio, H.A.; Kattz, G.W.; Cech, N.B. Goldenseal (Hydrastis canadensis L.) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition. Planta Med. 2011, 77, 835–840. [Google Scholar] [CrossRef]
- Amsterdam, D. Susceptibility testing of antimicrobials in liquid media. In Antibiotics in Laboratory Medicine, 5th ed.; Loman, V., Ed.; Williams and Wilkins: Philadelphia, PA, USA, 2005; pp. 61–143. [Google Scholar]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. EUCAST discussion document E.dis. 5.1. Clin. Microbiol. Infec. 2003, 9, 1–7. [Google Scholar] [CrossRef]
- Cudic, M.; Condie, B.A; Weiner, D.J.; Lysenko, E.S.; Xiang, Z.Q.; Insug, O.; Bulet, P.; Otvos, L., Jr. Development of novel antibacterial peptides that kill resistant clinical isolates. Peptides 2002, 23, 2071–2083. [Google Scholar] [CrossRef]
- Devienne, K.F.; Raddi, M.S.G. Screening for antimicrobial activity of natural Products using a microplate photometer. Braz. J. Microbiol. 2002, 33, 166–168. [Google Scholar] [CrossRef]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. EUCAST definitive document E. Def 1.2. Clin. Microbiol. Infec. 2000, 6, 503–508. [Google Scholar] [CrossRef]
- Fernandes, A., Jr.; Balestrin, E.C.; Betoni, J.E.C.; Orsi, R.O.; da Cunha, M.R.S.; Montelli, A.C. Propolis: Anti-Staphylococcus aureus activity and synergism with antimicrobial drugs. Memórias. Instituto. Oswaldo. Cruz 2005, 100, 563–566. [Google Scholar] [CrossRef]
- Mahon, C.R.; Manuselis, J.R.G. Textbook of Diagnostic Microbiology; W.B. Saunders: Philadelphia, PA, USA, 1995. [Google Scholar]
- Sample Availability: Samples of the compounds and bacterial strains are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wojtyczka, R.D.; Dziedzic, A.; Kępa, M.; Kubina, R.; Kabała-Dzik, A.; Mularz, T.; Idzik, D. Berberine Enhances the Antibacterial Activity of Selected Antibiotics against Coagulase-Negative Staphylococcus Strains in Vitro. Molecules 2014, 19, 6583-6596. https://doi.org/10.3390/molecules19056583
Wojtyczka RD, Dziedzic A, Kępa M, Kubina R, Kabała-Dzik A, Mularz T, Idzik D. Berberine Enhances the Antibacterial Activity of Selected Antibiotics against Coagulase-Negative Staphylococcus Strains in Vitro. Molecules. 2014; 19(5):6583-6596. https://doi.org/10.3390/molecules19056583
Chicago/Turabian StyleWojtyczka, Robert D., Arkadiusz Dziedzic, Małgorzata Kępa, Robert Kubina, Agata Kabała-Dzik, Tomasz Mularz, and Danuta Idzik. 2014. "Berberine Enhances the Antibacterial Activity of Selected Antibiotics against Coagulase-Negative Staphylococcus Strains in Vitro" Molecules 19, no. 5: 6583-6596. https://doi.org/10.3390/molecules19056583
APA StyleWojtyczka, R. D., Dziedzic, A., Kępa, M., Kubina, R., Kabała-Dzik, A., Mularz, T., & Idzik, D. (2014). Berberine Enhances the Antibacterial Activity of Selected Antibiotics against Coagulase-Negative Staphylococcus Strains in Vitro. Molecules, 19(5), 6583-6596. https://doi.org/10.3390/molecules19056583