New Flavanol and Cycloartane Glucosides from Landoltia punctata
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation of Compounds 1–4
2.2. Biological Activity Assay
3. Experimental
3.1. General Information
3.2. Material
3.3. Extraction and Isolation
3.4. Hydrolysis
3.5. Spectral Data
3.6. Biological Activity Assay
No. | 1 | 2 | No. | 1 | 2 | ||||
---|---|---|---|---|---|---|---|---|---|
δC | δH | δC | δH | δC | δH | δC | δH | ||
1 | 33.3 | 1.65–1.67 (m), 1.32–1.34 (m) (m) | 30.3 | 2.50–2.53 (m), 1.25–1.26 (m) | 25 | 74.0 | 73.1 | ||
2 | 30.7 | 2.08–2.11 (m), 1.35–1.36 (m) | 29.3 | 1.81–1.82 (m), 1.95–1.97 (m) | 26 | 26.1 | 1.24 (s, 3H) | 26.5 | 1.56 (s, 3H) |
3 | 90.9 | 3.34–3.36 (m) | 89.1 | 3.45–3.48 (m) | 27 | 25.6 | 1.23 (s, 3H) | 26.2 | 1.54 (s, 3H) |
4 | 42.4 | 41.7 | 28 | 26.0 | 1.13 (s, 3H) | 26.0 | 1.29 (s, 3H) | ||
5 | 50.4 | 1.68–1.70 (m) | 47.8 | 1.20–1.22 (m) | 29 | 15.6 | 0.95 (s, 3H) | 15.7 | 1.19 (s, 3H) |
6 | 22.3 | 1.67–1.68 (m), 1.68–1.70 (m) | 27.2 | 1.87–1.88 (m), 1.37 (overlapped) | 30 | 20.1 | 1.01 (s, 3H) | 18.6 | 0.99 (s, 3H) |
7 | 27.4 | 1.39–1.40 (m), 1.36–1.37 (m) | 33.5 | 1.50–1.51 (m), 1.53 (overlapped) | 1' | 105.3 | 4.52 (d, J = 7.20, 1H) | 105.2 | 4.90 (d, J = 7.56, 1H) |
8 | 49.7 | 1.60–1.63 (m) | 53.3 | 1.64–1.65 (m) | 2' | 81.4 | 3.62–3.63 (m) | 83.5 | 4.15–4.17 (m) |
9 | 21.4 | 20.2 | 3' | 78.2 | 3.61–3.62 (m) | 77.3 | 4.10–4.11 (m) | ||
10 | 27.5 | 26.9 | 4' | 71.7 | 3.39–3.40 (m) | 72.0 | 4.20–4.21 (m) | ||
11 | 27.7 | 1.70–1.72 (m), 2.10–2.11 (m) | 21.5 | 1.45–1.46 (m), 0.70–0.72 (m) | 5' | 77.1 | 3.52–3.54 (m) | 77.2 | 4.03–4.04 (m) |
12 | 34.2 | 1.72, 1.76, overlapped | 32.6 | 1.64–1.65 (m), 1.24 (overlapped) | 6' | 70.2 | 3.85–3.87 (m), 4.16–4.18 (br. d) | 70.4 | 4.29–4.31 (m), 4.82 (br. d) |
13 | 46.9 | 45.9 | 1'' | 104.8 | 4.74 (d, J = 7.68, 1H) | 106.3 | 5.35 (d, J = 7.62, 1H) | ||
14 | 49.8 | 49.3 | 2'' | 76.5 | 3.28–3.29 (m) | 75.6 | 4.04–4.05 (m) | ||
15 | 37.0 | 1.40–1.41 (m), 1.42–1.43 (m) | 36.7 | 1.65–1.66 (m), 1.55 (overlapped) | 3'' | 78.4 | 3.60–3.61 (m) | 78.3 | 4.24–4.25 (m) |
16 | 28.4 | 1.42–1.43 (m), 2.03–2.05 (m) | 28.8 | 1.37–1.38 (m), 1.63–1.64 (m) | 4'' | 72.0 | 3.26–3,27 (m) | 71.8 | 4.28–4.29 (m) |
17 | 50.0 | 1.79–1.81 (m) | 48.4 | 1.43–1.44 (m) | 5'' | 78.1 | 3.30–3.31 (m) | 78.6 | 3.90–3.92 (m) |
18 | 18.7 | 1.11 (s, 3H) | 19.9 | 0.84 (s, 3H) | 6'' | 63.0 | 3.71–3.72 (m), 3.93–3.94 (m) | 63.0 | 4.45–4.46 (m), 4.52–4.53 (m) |
19 | 30.9 | 0.44 (d, J = 3.72) | 30.0 | 0.24 (d, J = 4.08) | 1''' | 105.0 | 4.48 (d, J = 7.74, 1H) | 105.7 | 5.13 ( d, J = 7.80, 1H) |
0.64 (d, J = 3.72) | 0.48 (d, J = 4.08) | 2''' | 75.4 | 3.24–3.26 (m) | 75.5 | 4.05–4.06 (m) | |||
20 | 44.0 | 1.78–1.79 (m) | 36.1 | 1.23–1.24 (m) | 3''' | 78.0 | 3.40–3.42 (m) | 78.8 | 3.94–3.96 (m) |
21 | 12.7 | 0.95 (s, 3H) | 18.9 | 1.01 (s, 3H) | 4''' | 71.9 | 3.31–3.32 (m) | 71.1 | 4.03–4.04 (m) |
22 | 71.3 | 4.01 (br. d) | 23.2 | 0.86–0.87 (m), 1.25 (overlapped) | 5''' | 78.1 | 3.29–3.30 (m) | 78.4 | 4.21–4.22 (m) |
23 | 32.9 | 1.40–1.41 (m), 1.53–1.57 (m) | 34.5 | 1.83–1.85 (m), 1.68 (overlapped) | 6''' | 63.3 | 3.70–3.71 (m), 3.90–3.92 (m) | 63.1 | 4.33–4.36 (m), 4.48–4.50 (m) |
24 | 76.2 | 3.58–3.60 (m) | 79.4 | 3.78–3.81 (m) |
No. | 3 | 4 | ||
---|---|---|---|---|
δC | δH | δC | δH | |
2 | 80.3 | 4.98 (br. s, 1H) | 78.6 | 5.05 (br. s, 1H) |
3 | 67.4 | 4.29 (br. s, 1H) | 69.2 | 4.04 (br. d, 1H) |
4 | 29.7 | 3.09 (d, J = 17.60, 1H)3.02(1H, dd) | 73.5 | 4.62 (d, J = 2.28, 1H) |
3.02 (dd, J = 17.60, 4.38, 1H) | ||||
5 | 158.6 | 157.9 | ||
6 | 97.1 | 6.49(d, J = 2.10) | 96.6 | 6.54 (d, J = 1.80) |
7 | 160.9 | 162.9 | ||
8 | 96.5 | 6.29 (d, J = 2.10) | 96.3 | 6.30 (d, J = 1.80) |
9 | 157.3 | 160.4 | ||
10 | 104.0 | 104.4 | ||
1' | 132.3 | 131.6 | ||
2' | 112.1 | 7.22 (d, J = 1.06) | 112.3 | 7.22 (d, J = 1.10) |
3' | 148.8 | 149.0 | ||
4' | 147.2 | 147.4 | ||
5' | 115.9 | 6.87 (d, J = 8.16) | 116.0 | 6.90 (d, J = 8.04) |
6' | 120.8 | 6.99 (dd, J = 1.06, 8.16) | 121.0 | 7.00 (dd, J = 1.10, 8.04) |
1'' | 102.8 | 4.95 (d, J = 7.20) | 102.6 | 4.99 (d, J = 7.50) |
2'' | 75.1 | 3.50–3.55 (overlapped) | 75.3 | 3.58–3.59 (overlapped) |
3'' | 78.4 | 3.50–3.55 (overlapped) | 78.5 | 3.53–3.56 (overlapped) |
4'' | 71.6 | 3.47–3.48 (m) | 71.6 | 3.46–3.48 (overlapped) |
5'' | 78.2 | 3.50–3.55 (overlapped) | 76.9 | 3.53–3.56 (overlapped) |
6'' | 62.7 | 3.79 (dd, J = 5.58, 12.10) | 62.8 | 3.79 (dd, J = 5.00, 12.20) |
3.98 (d, J = 12.10) | 4.00 (d, J = 12.20) | |||
MeO-4 | 56.6 | 3.65 (s, 3H) | ||
MeO-7 | 56.6 | 3.82 (s, 3H) | 56.0 | 3.84 (s, 3H) |
MeO-3' | 56.0 | 3.95 (s, 3H ) | 57.8 | 3.96 (s, 3H) |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ge, X.M.; Zhang, N.N.; Phillips, G.C.; Xu, J.F. Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol. Bioresour. Technol. 2012, 124, 485–488. [Google Scholar] [CrossRef]
- Zhao, H.; Appenroth, K.; Landesman, L.; Salmeán, A.A.; Lam, E. Duckweed rising at Chengdu: Summary of the 1st International Conference on Duckweed Application and Research. Plant. Mol. Boil. 2012, 78, 627–632. [Google Scholar] [CrossRef]
- Cole, C.T.; Voskuil, M.I. Population genetic structure in duckweed (Lemna minor, Lemnaceae). Can. J. Bot. 1996, 74, 222–230. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, H.; Stomp, A.M.; Cheng, J.J. The production of duckweed as a source of biofuels. Biofuels 2012, 3, 589–601. [Google Scholar] [CrossRef]
- Ozengin, N.; Elmaci, A. Performance of duckweed (Lemna minor L.) on different types of wastewater treatment. J. Environ. Biol. 2007, 28, 307–314. [Google Scholar]
- Mohedano, R.A.; Costa, R.H.; Tavares, F.A.; Filho, B.P. High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Bioresour. Technol. 2012, 112, 98–104. [Google Scholar] [CrossRef]
- Cheng, J.J.; Stomp, A.M. Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean 2009, 37, 17–26. [Google Scholar]
- Xu, J.; Cui, W.; Cheng, J.J.; Stomp, A.M. Production of high-starch duckweed and its conversion to bioethanol. Biosyst. Eng. 2011, 110, 67–72. [Google Scholar] [CrossRef]
- Xiao, Y.; Fang, Y.; Jin, Y.; Zhang, G.; Zhao, H. Culturing duckweed in the field for starch accumulation. Ind. Crop. Prod. 2013, 48, 183–190. [Google Scholar] [CrossRef]
- Jurd, L.; Geissman, T.A.; Seikel, M.K. The flavonoid constituents of Spirodela oligorrhiza II. The flavone constituents. Arch. Biochem. Biophys. 1957, 67, 284–297. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lee, I.R.; Won, W.S.; Park, C.H. Flavonoids of Elscholtzia cristata. Arch. Pharm. Res. 1988, 11, 247–249. [Google Scholar] [CrossRef]
- Rayyan, S.; Fossen, T.; Nateland, H.S.; Andersen, Q.M. Isolation and identification of flavonoids, including flavone rotamers, from the herbal drug ‘crataegi folium cum flore’ (hawthorn). Phytochem. Anal. 2005, 16, 334–341. [Google Scholar] [CrossRef]
- Kawasaki, M.; Kanomata, T.; Yoshitama, K. Flavonoids in the leaves of twenty-eight polygonaceous plants. Bot. Mag. Tokyo 1986, 99, 63–74. [Google Scholar] [CrossRef]
- Dubois, M.A.; Zoll, A.; Markham, K.R.; Bouillant, M.L.; Dellamonica, G.; Chopin, J. 6-c-β-d-glucopyranosyl-8-c-β-d-galactopyranosylapigenin from Cerastium arvense. Phytochemistry 1984, 23, 706–707. [Google Scholar] [CrossRef]
- Kamboj, A.; Salujai, A.K. Isolation of stigmasterol and β-sitosterol from petroleum ether extract of aerial parts of Ageratum conyzoides (Asteraceae). Int. J. Pharm. Pharm. Sci. 2011, 3, 94–96. [Google Scholar]
- Cui, J.; Wang, H.; Huang, Y.; Xin, Y.; Zhou, A. Synthesis and cytotoxic analysis of some disodium 3β, 6β-dihydroxysterol disulfates. Steroids 2009, 74, 1057–1060. [Google Scholar] [CrossRef]
- Polat, E.; Caliskan-Alankus, O.; Perrone, A.; Piacente, S.; Bedir, E. Cycloartane-type glycosides from Astragalus amblolepis. Phytochemistry 2009, 70, 628–634. [Google Scholar] [CrossRef]
- Yokosuka, A.; Sato, K.; Yamori, T.; Mimaki, Y. Triterpene glycosides from Curculigo orchioides and their cytotoxic activity. J. Nat. Prod. 2010, 73, 1102–1106. [Google Scholar] [CrossRef]
- Chaturvedula, P.V.S.; Prakash, I. A new diterpene glycoside from Stevia rebaudiana. Molecules 2011, 16, 2937–2943. [Google Scholar] [CrossRef]
- Mohan, R.; Birari, R.; Karmase, A.; Jagtap, S.; Bhutani, K.K. Antioxidant activity of a new phenolic glycoside from Lagenaria siceraria Stand. fruits. Food Chem. 2012, 132, 244–251. [Google Scholar] [CrossRef]
- Bedir, E.; Calis, I.; Khan, I.A. Macrophyllosaponin E: A novel compound from the roots of Astragalus oleifolius. Chem. Pharm. Bull. 2000, 48, 1081–1083. [Google Scholar] [CrossRef]
- Hirotani, M.; Zhou, Y.; Rut aTsutomu Furuya, H. Cycloartane triterpene glycosides from the hairy root cultures of Astragalus. membranaceus. Phytochemistry 1994, 37, 1403–1407. [Google Scholar] [CrossRef]
- Thompson, R.S.; Jacques, D.; Haslam, E.; Tanner, R.J.N. Plant proanthocyanidins. Part I. Introduction; the isolation, structure, and distribution in nature of plant procyanidins. J. Chem. Soc. Perkin Trans. 1 1972, 1387–1399. [Google Scholar]
- Fletcher, A.C.; Porter, L.J.; Haslam, E.; Gupta, R.K. Plant proanthocyanidins. Part 3. Conformational and configurational studies of natural procyanidins. J. Chem. Soc. Perkin Trans. 1 1977, 1628–1637. [Google Scholar]
- Mateus, N.; Silva, A.M.; Santos-Buelga, C.; Rivas-Gonzalo, J.C.; de Freitas, V. Identification of anthocyanin-flavanol pigments in red wines by NMR and mass spectrometry. J. Agric. Food Chem. 2002, 50, 2110–2116. [Google Scholar] [CrossRef]
- Otsuka, H.; Hirata, E.; Shinzato, T.; Takeda, Y. Glochiflavanosides AD: Flavanol glucosides from the leaves of Glochidion zeylanicum (Gaertn) A. Juss. Chem. Pharm. Bull. 2001, 49, 921–923. [Google Scholar] [CrossRef]
- Li, S.Y.; Fuchino, H.; Kawahara, N.; Sekita, S.; Satake, M. New phenolic constituents from Smilax bracteata. J. Nat. Prod. 2002, 65, 262–266. [Google Scholar] [CrossRef]
- Li, F.; Zhan, Z.; Liu, F.; Yang, Y.; Li, L.; Feng, Z.; Jiang, J.S.; Zhang, P. Polyflavanostilbene A, a new flavanol-fused stilbene glycoside from Polygonum cuspidtum. Org. Lett. 2013, 15, 674–677. [Google Scholar]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant. Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
- Aron, P.M.; Kennedy, J.A. Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res. 2008, 52, 79–104. [Google Scholar] [CrossRef]
- Scheid, L.; Reusch, A.; Stehle, P.; Ellinger, S. Antioxidant effects of cocoa and cocoa products ex vivo and in vivo: Is there evidence from controlled intervention studies? Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 737–742. [Google Scholar] [CrossRef]
- Xu, G.B.; Yang, T.; Bao, J.K.; Fang, D.M.; Li, G.Y. Isochaetomium A2, a new bis (naphthodihydropyran-4-one) with antimicrobial and immunological activities from fungus Chaetomium microcephalum. Arch. Pharm. Res. 2013. [Google Scholar] [CrossRef]
- Tian, S.Z.; Pu, X.; Luo, G.Y.; Zhao, L.X.; Xu, L.H.; Li, W.J.; Luo, Y.G. Isolation and characterization of new p-terphenyls with antifungal, antibacterial, and antioxidant activities from halophilic actinomycete Nocardiopsis gilva YIM 90087. J. Agric. Food Chem. 2013, 61, 3006–3012. [Google Scholar] [CrossRef]
- Tao, X.; Fang, Y.; Xiao, Y.; Jin, Y.L.; Ma, X.R.; Zhao, Y.; He, K.Z.; Zhao, H.; Wang, H.Y. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation. Biotechnol. Biofuels 2013, 6, 72–87. [Google Scholar] [CrossRef]
- Li, S.F.; Di, Y.T.; Luo, R.H.; Zheng, Y.T.; Wang, Y.H.; Fang, X.; Zhang, Y.; Li, L.; He, H.P.; Li, S.L. Cycloartane triterpenoids from Cassia occidentalis. Planta. Med. 2012, 78, 821–827. [Google Scholar] [CrossRef]
- Wang, X.Y.; Tang, G.H.; Yuan, C.M.; Zhang, Y.; Zou, T.; Yu, C.; Zhao, Q.; Hao, X.J.; He, H.P. Aphagrandinoids A–D, cycloartane triterpenoids with antibacterial activities from Aphanamixis grandifolia. Fitoterapia 2013, 85, 64–68. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds 3, 6, 7–13 are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, N.; Xu, G.; Fang, Y.; Yang, T.; Zhao, H.; Li, G. New Flavanol and Cycloartane Glucosides from Landoltia punctata. Molecules 2014, 19, 6623-6634. https://doi.org/10.3390/molecules19056623
Wang N, Xu G, Fang Y, Yang T, Zhao H, Li G. New Flavanol and Cycloartane Glucosides from Landoltia punctata. Molecules. 2014; 19(5):6623-6634. https://doi.org/10.3390/molecules19056623
Chicago/Turabian StyleWang, Nini, Guobo Xu, Yang Fang, Tao Yang, Hai Zhao, and Guoyou Li. 2014. "New Flavanol and Cycloartane Glucosides from Landoltia punctata" Molecules 19, no. 5: 6623-6634. https://doi.org/10.3390/molecules19056623
APA StyleWang, N., Xu, G., Fang, Y., Yang, T., Zhao, H., & Li, G. (2014). New Flavanol and Cycloartane Glucosides from Landoltia punctata. Molecules, 19(5), 6623-6634. https://doi.org/10.3390/molecules19056623