The Edible Brown Seaweed Ecklonia cava Reduces Hypersensitivity in Postoperative and Neuropathic Pain Models in Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Ecklonia cava Extracts on Mechanical and Thermal Hypersensitivity Induced by Plantar Incision
2.2. Effects of E. cava Extracts on Ultrasonic Vocalizations Induced by Plantar Incision
2.3. Effects of E. Cava Extracts on Mechanical Hypersensitivity Induced by Spared Nerve Injury
3. Experimental
3.1. Preparation of E. cava Extracts
3.2. Animals and Treatments
3.3. Plantar Incision of Postoperative Pain Rat Model
3.4. Spared Nerve Injury (SNI) of Neuropathic Pain Rat Model
3.5. Mechanical Withdrawal Threshold (MWT) Analysis
3.6. Heat and Cold Withdrawal Latencies Analysis
3.7. Ultrasonic Vocalization (USVs) Analysis
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dickenson, A.H. Recent advances in the physiology and pharmacology of pain: Plasticity and its implications for clinical analgesia. J. Psychopharmacol. 1991, 5, 342–351. [Google Scholar] [CrossRef]
- Gilron, I.; Coderre, T.J. Emerging drugs in neuropathic pain. Expert Opin. Emerg. Dr. 2007, 12, 113–126. [Google Scholar] [CrossRef]
- Rao, P.; Knaus, E.E. Evolution of nonsteroidal anti-inflammatory drugs (nsaids): Cyclooxygenase (cox) inhibition and beyond. J. Pharm. Pharm. Sci. 2008, 11, 81s–110s. [Google Scholar]
- Furlan, A.D.; Sandoval, J.A.; Mailis-Gagnon, A.; Tunks, E. Opioids for chronic noncancer pain: A meta-analysis of effectiveness and side effects. Can. Med. Assn. J. 2006, 174, 1589–1594. [Google Scholar] [CrossRef]
- Yokogawa, K.; Matsui-Yuasa, I.; Tamura, A.; Terada, M.; Kojima-Yuasa, A. Inhibitory effects of ecklonia cava extract on high glucose-induced hepatic stellate cell activation. Mar. Drugs 2011, 9, 2793–2808. [Google Scholar] [CrossRef]
- Moon, S.; Kim, J. Iodine content of human milk and dietary iodine intake of korean lactating mothers. Int. J. Food Sci. Nutr. 1999, 50, 165–171. [Google Scholar] [CrossRef]
- Kang, H.S.; Chung, H.Y.; Kim, J.Y.; Son, B.W.; Jung, H.A.; Choi, J.S. Inhibitory phlorotannins from the edible brown alga ecklonia stolonifera on total reactive oxygen species (ros) generation. Arch. Pharm. Res. 2004, 27, 194–198. [Google Scholar] [CrossRef]
- Nagayama, K.; Iwamura, Y.; Shibata, T.; Hirayama, I.; Nakamura, T. Bactericidal activity of phlorotannins from the brown alga ecklonia kurome. J. Antimicrob. Chemother. 2002, 50, 889–893. [Google Scholar] [CrossRef]
- Fukuyama, Y.; Kodama, M.; Miura, I.; Kinzyo, Z.; Mori, H.; Nakayama, Y.; Takahashi, M. Anti-plasmin inhibitor. Vi. Structure of phlorofucofuroeckol a, a novel phlorotannin with both dibenzo-1,4-dioxin and dibenzofuran elements, from ecklonia kurome okamura. Chem. Pharm. Bull. 1990, 38, 133–135. [Google Scholar] [CrossRef]
- Nwosu, F.; Morris, J.; Lund, V.A.; Stewart, D.; Ross, H.A.; McDougall, G.J. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem. 2011, 126, 1006–1012. [Google Scholar] [CrossRef]
- Kim, A.R.; Shin, T.S.; Lee, M.S.; Park, J.Y.; Park, K.E.; Yoon, N.Y.; Kim, J.S.; Choi, J.S.; Jang, B.C.; Byun, D.S.; et al. Isolation and identification of phlorotannins from ecklonia stolonifera with antioxidant and anti-inflammatory properties. J. Agric. Food Chem. 2009, 57, 3483–3489. [Google Scholar] [CrossRef]
- Cho, S.; Yang, H.; Jeon, Y.J.; Lee, C.J.; Jin, Y.H.; Baek, N.I.; Kim, D.; Kang, S.M.; Yoon, M.; Yong, H.; et al. Phlorotannins of the edible brown seaweed ecklonia cava kjellman induce sleep via positive allosteric modulation of gamma-aminobutyric acid type a-benzodiazepine receptor: A novel neurological activity of seaweed polyphenols. Food Chem. 2012, 132, 1133–1142. [Google Scholar] [CrossRef]
- Cho, S.; Han, D.; Kim, S.B.; Yoon, M.; Yang, H.; Jin, Y.H.; Jo, J.; Yong, H.; Lee, S.H.; Jeon, Y.J.; et al. Depressive effects on the central nervous system and underlying mechanism of the enzymatic extract and its phlorotannin-rich fraction from ecklonia cava edible brown seaweed. Biosci. Biotech. Bioch. 2012, 76, 163–168. [Google Scholar]
- Munro, G.; Hansen, R.R.; Mirza, N.R. Gaba(a) receptor modulation: Potential to deliver novel pain medicines? Eur. J. Pharm. 2013, 716, 17–23. [Google Scholar] [CrossRef]
- Heo, S.J.; Park, E.J.; Lee, K.W.; Jeon, Y.J. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 2005, 96, 1613–1623. [Google Scholar] [CrossRef]
- Brennan, T.J.; Vandermeulen, E.P.; Gebhart, G.F. Characterization of a rat model of incisional pain. Pain 1996, 64, 493–501. [Google Scholar] [CrossRef]
- Bourquin, A.F.; Suveges, M.; Pertin, M.; Gilliard, N.; Sardy, S.; Davison, A.C.; Spahn, D.R.; Decosterd, I. Assessment and analysis of mechanical allodynia-like behavior induced by spared nerve injury (sni) in the mouse. Pain 2006, 122, 14.e1–14.e14. [Google Scholar]
- Swiergiel, A.H.; Zhou, Y.; Dunn, A.J. Effects of chronic footshock, restraint and corticotropin-releasing factor on freezing, ultrasonic vocalization and forced swim behavior in rats. Behav. Brain Res. 2007, 183, 178–187. [Google Scholar] [CrossRef]
- Patel, S.; Naeem, S.; Kesingland, A.; Froestl, W.; Capogna, M.; Urban, L.; Fox, A. The effects of gaba(b) agonists and gabapentin on mechanical hyperalgesia in models of neuropathic and inflammatory pain in the rat. Pain 2001, 90, 217–226. [Google Scholar] [CrossRef]
- Scherer, M.; Reichl, S.U.; Augustin, M.; Pogatzki-Zahn, E.M.; Zahn, P.K. The assessment of cold hyperalgesia after an incision. Anesth. Analg. 2010, 110, 222–227. [Google Scholar] [CrossRef]
- Girard, P.; Pansart, Y.; Coppe, M.C.; Gillardin, J.M. Nefopam reduces thermal hypersensitivity in acute and postoperative pain models in the rat. Pharmacol. Res. 2001, 44, 541–545. [Google Scholar] [CrossRef]
- Litvin, Y.; Blanchard, D.C.; Blanchard, R.J. Rat 22khz ultrasonic vocalizations as alarm cries. Behav. Brain Res. 2007, 182, 166–172. [Google Scholar] [CrossRef]
- Knutson, B.; Burgdorf, J.; Panksepp, J. Ultrasonic vocalizations as indices of affective states in rats. Psychol. bull. 2002, 128, 961–977. [Google Scholar]
- Brudzynski, S.M.; Chiu, E.M. Behavioural responses of laboratory rats to playback of 22 khz ultrasonic calls. Physiol. Behav. 1995, 57, 1039–1044. [Google Scholar] [CrossRef]
- Miczek, K.A.; Weerts, E.M.; Vivian, J.A.; Barros, H.M. Aggression, anxiety and vocalizations in animals: Gabaa and 5-ht anxiolytics. Psychopharmacology 1995, 121, 38–56. [Google Scholar] [CrossRef]
- Lim, D.W.; Kim, J.G.; Han, D.; Kim, Y.T. Analgesic effect of harpagophytum procumbens on postoperative and neuropathic pain in rats. Molecules 2014, 19, 1060–1068. [Google Scholar] [CrossRef]
- Portfors, C.V. Types and functions of ultrasonic vocalizations in laboratory rats and mice. J. Am. Assoc. Lab. Anim. Sci. 2007, 46, 28–34. [Google Scholar]
- Richner, M.; Bjerrum, O.J.; Nykjaer, A.; Vaegter, C.B. The spared nerve injury (SNI) model of induced mechanical allodynia in mice. J. Visualized Exp. 2011. [Google Scholar] [CrossRef]
- Oh, S.; Jang, C.G.; Ma, T.; Ho, I.K. Activation of protein kinase c by phorbol dibutyrate modulates gabaa receptor binding in rat brain slices. Brain Res. 1999, 850, 158–165. [Google Scholar] [CrossRef]
- Munro, G.; Ahring, P.K.; Mirza, N.R.; Mirza, R. Developing analgesics by enhancing spinal inhibition after injury: Gaba(a) receptor subtypes as novel targets. Trends Pharmacol. Sci 2009, 30, 453–459. [Google Scholar] [CrossRef]
- Hwang, J.H.; Yaksh, T.L. The effect of spinal gaba receptor agonists on tactile allodynia in a surgically-induced neuropathic pain model in the rat. Pain 1997, 70, 15–22. [Google Scholar] [CrossRef]
- Hunter, J.C.; Gogas, K.R.; Hedley, L.R.; Jacobson, L.O.; Kassotakis, L.; Thompson, J.; Fontana, D.J. The effect of novel anti-epileptic drugs in rat experimental models of acute and chronic pain. Eur. J. Pharm. 1997, 324, 153–160. [Google Scholar] [CrossRef]
- Back, S.K.; Won, S.Y.; Hong, S.K.; Na, H.S. Gabapentin relieves mechanical, warm and cold allodynia in a rat model of peripheral neuropathy. Neurosci. Lett. 2004, 368, 341–344. [Google Scholar] [CrossRef]
- Backonja, M.M. Gabapentin monotherapy for the symptomatic treatment of painful neuropathy: A multicenter, double-blind, placebo-controlled trial in patients with diabetes mellitus 1. Epilepsia 1999, 40, S57–59. [Google Scholar] [CrossRef]
- Decosterd, I.; Woolf, C.J. Spared nerve injury: An animal model of persistent peripheral neuropathic pain. Pain 2000, 87, 149–158. [Google Scholar]
- Bennett, G.J.; Xie, Y.K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988, 33, 87–107. [Google Scholar] [CrossRef]
- Sample Availability: Samples of Ecklonia cava Extracts are available from the authors.
© 2014 by the authors. licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kim, J.G.; Lim, D.W.; Cho, S.; Han, D.; Kim, Y.T. The Edible Brown Seaweed Ecklonia cava Reduces Hypersensitivity in Postoperative and Neuropathic Pain Models in Rats. Molecules 2014, 19, 7669-7678. https://doi.org/10.3390/molecules19067669
Kim JG, Lim DW, Cho S, Han D, Kim YT. The Edible Brown Seaweed Ecklonia cava Reduces Hypersensitivity in Postoperative and Neuropathic Pain Models in Rats. Molecules. 2014; 19(6):7669-7678. https://doi.org/10.3390/molecules19067669
Chicago/Turabian StyleKim, Jae Goo, Dong Wook Lim, Suengmok Cho, Daeseok Han, and Yun Tai Kim. 2014. "The Edible Brown Seaweed Ecklonia cava Reduces Hypersensitivity in Postoperative and Neuropathic Pain Models in Rats" Molecules 19, no. 6: 7669-7678. https://doi.org/10.3390/molecules19067669