Magnetic Pycnoporus sanguineus-Loaded Alginate Composite Beads for Removing Dye from Aqueous Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Magnetic P. sanguineus-Loaded Alginate Composite Beads
2.2. Removal of Dye from an Aqueous Solution
2.3. Effect of Initial Dye Concentration and Contact Time
2.4. Effect of pH on Adsorption
2.5. Kinetics Studies
Co mg/L | T (K) | Pseudo-First-Order | ||
---|---|---|---|---|
K1 | qe | R2 | ||
70 | 298 | 0.080 | 1.40 | 0.981 |
30 | 298 | 0.045 | 0.26 | 0.912 |
10 | 298 | 0.024 | 0.68 | 0.991 |
Co mg/L | T (K) | Pseudo-Second-Order | ||
---|---|---|---|---|
K2 | qe | R2 | ||
70 | 298 | 0.004 | 2.214 | 0.984 |
30 | 298 | 0.242 | 0.275 | 0.760 |
10 | 298 | 0.023 | 0.420 | 0.928 |
3. Experimental
3.1. Microorganism and Production Medium
3.2. Preparation of Iron Oxide Nanoparticles
3.3. Preparation of Calcium-Alginate Beads
3.4. Preparation of Magnetic P. sanguineus-Loaded Alginate Composite Beads
3.5. Preparation of Dye Solutions
3.6. Kinetic Studies
3.6.1. Pseudo-First-Order Kinetic Model
3.6.2. Pseudo-Second-Order Kinetic Model
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kabir, M.; Daly, E.; Maggi, F. A review of ion and metal pollutants in urban green water infrastructures. Sci. Total Environ. 2014, 470, 695–706. [Google Scholar] [CrossRef]
- Yang, H.; Flower, R.J.; Thompson, J.R. Pollution: China’s new leaders offer green hope. Nature 2013, 493, 163–163. [Google Scholar]
- Maurya, N.S.; Mittal, A.K.; Cornel, P.; Rother, E. Biosorption of dyes using dead macro fungi: Effect of dye structure, ionic strength and pH. Bioresour. Technol. 2006, 97, 512–521. [Google Scholar] [CrossRef]
- Rodríguez Couto, S. Dye removal by immobilised fungi. Biotechnol. Adv. 2009, 27, 227–235. [Google Scholar] [CrossRef]
- Mahmoodi, N.M. Magnetic ferrite nanoparticle–alginate composite: Synthesis, characterization and binary system dye removal. J. Taiwan Inst. Chem. Eng. 2013, 44, 322–330. [Google Scholar] [CrossRef]
- Rocher, V.; Siaugue, J.M.; Cabuil, V.; Bee, A. Removal of organic dyes by magnetic alginate beads. Water Res. 2008, 42, 1290–1298. [Google Scholar]
- Alexandru, M.G.; Bogdan, S.V.; Alina, M.H. Eugenol functionalized magnetite nanostructures used in anti-infectious therapy. Lett. Appl. Nanobiosci. 2013, 2, 120–123. [Google Scholar]
- Cotar, A.I.; Grumezescu, A.M.; Huang, K.S.; Voicu, G.; Chifiriuc, C.M.; Radulescu, R. Magnetite nanoparticles influence the efficacy of antibiotics against biofilm embedded Staphylococcus aureus cells. Biointerface Res. Appl. Chem. 2013, 3, 559–565. [Google Scholar]
- Grumezescu, A.M.; Andronescu, E.; Ficai, A.; Ficai, D.; Huang, K.S.; Gheorghe, I.; Chifiriuc, C.M. Water soluble magnetic biocomposite with potential applications for the antimicrobial therapy. Biointerface Res. Appl. Chem. 2012, 2, 469–475. [Google Scholar]
- Mihaiescu, D.E.; Hoeja, M.; Gheorghe, I.; Fical, A.; Grumezescu, A.M.; Bleotu, C.; Chifiriuc, C.M. Water soluble magnetite nanoparticles for antimicrobial drugs delivery. Lett. Appl. Nanobiosci. 2012, 1, 45–49. [Google Scholar]
- Andronescu, E.; Grumezescu, A.M.; Ficai, A.; Gheorghe, I.; Chifiriuc, M.; Mihaiescu, D.E.; Lazar, V. In vitro efficacy of antibiotic magnetic dextran microspheres complexes against staphylococcus aures and pseudomonas aeruginosa strains. Biointerface Res. Appl. Chem. 2012, 2, 332–338. [Google Scholar]
- LeSage, D.; Arai, K.; Glenn, D.R.; DeVience, S.J.; Pham, L.M.; Rahn, L.L.; Lukin, M.D.; Yacoby, A.; Komeili, A.; Walsworth, R.L. Optical magnetic imaging of living cells. Nature 2013, 496, 486–489. [Google Scholar] [CrossRef]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef]
- Ahrens, E.T.; Bulte, J.W. Tracking immune cells in vivo using magnetic resonance imaging. Nat. Rev. Immunol. 2013, 13, 755–763. [Google Scholar] [CrossRef]
- Deans, J.R.; Dixon, B.G. Uptake of Pb2+ and Cu2+ by novel biopolymers. Water Res. 1992, 26, 469–472. [Google Scholar] [CrossRef]
- Davis, T.A.; Volesky, B.; Mucci, A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef]
- Idris, A.; Ismail, N.S.M.; Hassan, N.; Misran, E.; Ngomsik, A.-F. Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution. J. Ind. Eng. Chem. 2012, 18, 1582–1589. [Google Scholar] [CrossRef]
- Yahaya, Y.A.; Don, M.M.; Bhatia, S. Biosorption of copper (II) onto immobilized cells of pycnoporus sanguineus from aqueous solution: Equilibrium and kinetic studies. J. Hazard. Mater. 2009, 161, 189–195. [Google Scholar] [CrossRef]
- Pointing, S.; Vrijmoed, L. Decolorization of azo and triphenylmethane dyes by pycnoporus sanguineus producing laccase as the sole phenoloxidase. World. J. Microbiol. Biotechnol. 2000, 16, 317–318. [Google Scholar] [CrossRef]
- Bayramoğlu, G.; Bektaş, S.; Arıca, M.Y. Biosorption of heavy metal ions on immobilized white-rot fungus trametes versicolor. J. Hazard. Mater. 2003, 101, 285–300. [Google Scholar] [CrossRef]
- Ting, Y.P.; Sun, G. Use of polyvinyl alcohol as a cell immobilization matrix for copper biosorption by yeast cells. J. Chem. Technol. Biotechnol. 2000, 75, 541–546. [Google Scholar] [CrossRef]
- Aksu, Z.; Gönen, F. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of breakthrough curves. Process Biochem. 2004, 39, 599–613. [Google Scholar] [CrossRef]
- Bauer, A.; Layh, N.; Syldatk, C.; Willetts, A. Polyvinyl alcohol-immobilized whole-cell preparations for the biotransformation of nitriles. Biotechnol. Lett. 1996, 18, 343–348. [Google Scholar]
- Yesilada, O.; Asma, D.; Cing, S. Decolorization of textile dyes by fungal pellets. Process Biochem. 2003, 38, 933–938. [Google Scholar] [CrossRef]
- Annuar, M.; Adnan, S.; Vikineswary, S.; Chisti, Y. Kinetics and energetics of azo dye decolorization by pycnoporus sanguineus. Water Air Soil Pollut. 2009, 202, 179–188. [Google Scholar] [CrossRef]
- Tiberto, P.; Barrera, G.; Celegato, F.; Coïsson, M.; Chiolerio, A.; Martino, P.; Pandolfi, P.; Allia, P. Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles. Eur. Phys. J. B 2013, 86. [Google Scholar] [CrossRef]
- Arica, M.Y.; Kaçar, Y.; Genç, Ö. Entrapment of white-rot fungus trametes versicolor in Ca-alginate Beads: Preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution. Bioresour. Technol. 2001, 80, 121–129. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Chih, H.Y.; Chih, Y.W.; Keng, S.H.; Chao, P.K.; Yi, C.C.; Jei, F.S. Microfluidic one-step synthesis of Fe3O4-chitosan composite particles and their applications. Int. J. Pharm. 2014, 463, 155–160. [Google Scholar] [CrossRef]
- Chih, Y.W.; Chih, H.Y.; Keng, S.H.; Fang, R.C.; Andrew, H.J.W.; Chih, H.C. Electrostatic droplets assisted in-situ synthesis of superparamagnetic chitosan microparticles for magnetic-responsive controlled drug release and copper ion removal. J. Mater. Chem. B 2013, 1, 2205–2212. [Google Scholar]
- Chih, H.Y.; Chih, Y.W.; Keng, S.H.; Chen, S.Y.; Andrew, H.J.W.; Wei, T.W.; Ming, Y.L. Facile synthesis of radial-like macroporous superparamagnetic chitosan spheres with in-situ co-precipitation and gelation of ferro-gels. PLoS One 2012, 7, e49329. [Google Scholar]
- Keng, S.H.; Chih, H.Y.; Chao, P.K.; Ming, D.K.; Alexandru, M.G.; Yung, S.L.; Chih, Y.W. Synthesis of uniform core-shell gelatin-alginate microparticles as intestine-released oral delivery drug carrier. Electrophoresis 2014, 35, 330–336. [Google Scholar] [CrossRef]
- Keng, S.H.; Yung, S.L.; Wan, R.C.; Yi, L.W.; Chih, H.Y. A facile fabrication of alginate microbubbles using a gas foaming reaction. Molecules 2013, 18, 9594–9602. [Google Scholar] [CrossRef]
- Keng, S.H.; Yang, C.H.; Lin, Y.S.; Wang, C.Y.; Lu, K.; Chang, Y.F.; Wang, Y.L. Electrostatic droplets assisted synthesis of alginate microcapsules. Drug Deliv. Transl. Res. 2011, 1, 289–298. [Google Scholar]
- Keng, S.H.; Yung, S.L.; Chih, H.Y.; Chia, W.T.; Ming, Y.H. In situ synthesis of twin monodispersed alginate microparticles. Soft Matter. 2011, 7, 6713–6718. [Google Scholar]
- Won, S.W.; Han, M.H.; Yun, Y.S. Different binding mechanisms in biosorption of reactive dyes according to their reactivity. Water Res. 2008, 42, 4847–4855. [Google Scholar] [CrossRef]
- Yan, H.; Yang, L.; Yang, Z.; Yang, H.; Li, A.; Cheng, R. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions. J. Hazard. Mater. 2012. [Google Scholar] [CrossRef]
- Fan, L.; Luo, C.; Li, X.; Lu, F.; Qiu, H.; Sun, M. Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J. Hazard. Mater. 2012. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, Y.; Luo, C.; Lu, F.; Qiu, H.; Sun, M. Synthesis and characterization of magnetic β-cyclodextrin–chitosan nanoparticles as nano-adsorbents for removal of methyl blue. Int. J. Biol. Macromol. 2012, 50, 444–450. [Google Scholar]
- Zhou, L.; Jin, J.; Liu, Z.; Liang, X.; Shang, C. Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. J. Hazard. Mater. 2011, 185, 1045–1052. [Google Scholar] [CrossRef]
- Huang, Y.T.; Shih, M.C. Prediction of adsorption kinetics and isotherms by using linear regression method. Int. J. Sci. Commer. Hum. 2013, 5, 303–320. [Google Scholar]
- Sample Availability: Not available.
© 2014 by the authors. licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yang, C.-H.; Shih, M.-C.; Chiu, H.-C.; Huang, K.-S. Magnetic Pycnoporus sanguineus-Loaded Alginate Composite Beads for Removing Dye from Aqueous Solutions. Molecules 2014, 19, 8276-8288. https://doi.org/10.3390/molecules19068276
Yang C-H, Shih M-C, Chiu H-C, Huang K-S. Magnetic Pycnoporus sanguineus-Loaded Alginate Composite Beads for Removing Dye from Aqueous Solutions. Molecules. 2014; 19(6):8276-8288. https://doi.org/10.3390/molecules19068276
Chicago/Turabian StyleYang, Chih-Hui, Ming-Cheng Shih, Han-Chen Chiu, and Keng-Shiang Huang. 2014. "Magnetic Pycnoporus sanguineus-Loaded Alginate Composite Beads for Removing Dye from Aqueous Solutions" Molecules 19, no. 6: 8276-8288. https://doi.org/10.3390/molecules19068276
APA StyleYang, C.-H., Shih, M.-C., Chiu, H.-C., & Huang, K.-S. (2014). Magnetic Pycnoporus sanguineus-Loaded Alginate Composite Beads for Removing Dye from Aqueous Solutions. Molecules, 19(6), 8276-8288. https://doi.org/10.3390/molecules19068276