New Potentially Active Pyrazinamide Derivatives Synthesized Under Microwave Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
Compound | Type of Synthesis | Time | Conditions | Yield | |
---|---|---|---|---|---|
1 | MW | 30 min | 140 °C, 120 W, MeOH, overpressure, 1 eq. pyridine, 2 eq. amine | 61.4% | |
Conventional | 60 min | 110 °C, toluene, 1 eq. pyridine, 2 eq. amine | 53.0% | ||
2 | MW | 30 min | 140 °C, 120 W, MeOH, overpressure, 1 eq. pyridine, 2 eq. amine | 78.7% | |
Conventional | 60 min | 110 °C, toluene, 1 eq. pyridine, 2 eq. amine | 46.3% | ||
3 | MW | 30 min | 140 °C, 120 W, MeOH, overpressure, 1 eq. pyridine, 2 eq. amine | 87.0% | |
Conventional | 60 min | 110 °C, toluene, 1 eq. pyridine, 2 eq. amine | 56.1% | ||
10 | MW | 30 min | 140 °C, 120 W, MeOH, overpressure, 1 eq. pyridine, 2 eq. amine | 67.2% | |
Conventional | 60 min | 110 °C, toluene, 1 eq. pyridine, 2 eq. amine | 0% |
Nr. | R1 | R2 | logP/ClogP | logk |
---|---|---|---|---|
1 | CH3 | H | −1.10/0.20 | −0.4028 |
2 | C2H5 | H | −0.76/0.73 | −0.2014 |
3 | C3H7 | H | −0.27/1.25 | 0.0038 |
4 | C4H9 | H | 0.14/1.78 | 0.2287 |
5 | C5H11 | H | 0.56/2.31 | 0.4563 |
6 | tert-C5H11 | H | 0.26/1.96 | 0.5468 |
7 | C6H13 | H | 0.98/2.84 | 0.6860 |
8 | C7H15 | H | 1.40/3.37 | 0.9198 |
9 | C8H17 | H | 1.81/3.90 | 1.1533 |
10 | C4H9 | C4H9 | 2.17/3.40 | 0.5197 |
11 | cyclopentyl | H | 0.03/1.67 | 0.2537 |
12 | cyclohexyl | H | 0.45/2.23 | 0.4523 |
13 | cycloheptyl | H | 0.87/2.79 | 0.6575 |
14 | –(CH2)4– | 0.01/0.34 | −0.4889 | |
15 | –(CH2)5– | 0.42/0.90 | −0.2333 | |
16 | –(CH2)2O(CH2)2– | −0.71/−0.49 | −0.6238 | |
17 | –(CH2)2NCH3(CH2)2– | −0.55/0.08 | −0.4253 | |
18 | –(CH2)2NH(CH2)2– | −0.93/−0.50 | −2.3522 |
2.2. Calculated and Experimentally Determined Lipophilicity
2.3. Biological Assays
2.3.1. Antimycobacterial in Vitro Screening
2.3.2. Antifungal and Antibacterial in Vitro Screening
IC80 [μmol/L] | ||||||||
---|---|---|---|---|---|---|---|---|
11 | 12 | 13 | AMP | VOR | NYS | FLU | ||
CA | 24 h | 500 | 31.25 | 15.62 | 0.12 | 0.008 | 0.98 | 0.24 |
48 h | >500 | 62.5 | 31.25 | 0.49 | 0.008 | 1.95 | 0.24 | |
CT | 24 h | >500 | 125 | 62.5 | 1.95 | 250 | 1.95 | >500 |
48 h | >500 | 500 | 500 | 1.95 | 250 | 3.9 | >500 | |
CK | 24 h | 250 | 15.62 | 7.81 | 1.95 | 0.98 | 1.95 | 125 |
48 h | 500 | 62.5 | 31.25 | 1.95 | 1.95 | 3.9 | 250 | |
CG | 24 h | 250 | 15.62 | 7.81 | 0.98 | 250 | 1.95 | 31.25 |
48 h | >500 | 31.25 | 15.62 | 1.95 | 250 | 3.9 | 250 | |
TA | 24 h | 500 | 31.25 | 31.25 | 0.49 | 7.81 | 1.95 | 250 |
48 h | >500 | 250 | 125 | 0.98 | 31.25 | 1.95 | 500 | |
AF | 24 h | 500 | 15.62 | 7.81 | 1.95 | 0.49 | 1.95 | >500 |
48 h | >500 | 62,5 | 7.81 | 1.95 | 0.98 | 3.9 | >500 | |
LC | 24 h | >500 | 250 | 62.5 | 7.81 | 250 | 15.62 | >500 |
48 h | >500 | 500 | 250 | 7.81 | 250 | 31.25 | >500 | |
TM | 72 h | 500 | 15.62 | 15.62 | 1.95 | 0.06 | 3.9 | 7.81 |
120 h | 500 | 15.62 | 15.62 | 1.95 | 0.12 | 7.81 | 125 |
2.3.3. Photosynthetic Electron Transport Inhibiting Activity Evaluation
Compound | IC50 [μmol/L] |
---|---|
3 | 1590 |
4 | 203 |
5 | 38.6 |
6 | 480 |
7 | 32.9 |
9 | 14.3 |
11 | 25.8 |
12 | 83.0 |
13 | 19.3 |
DCMU | 1.9 |
r = 0.955, s = 0.253, F = 25.79, n = 8
r = 0.881, s = 0.378, F = 8.68, n = 8
3. Experimental
3.1. General
3.2. Synthesis of Starting Compound and Final Products
3.3. Analytical Data of the Prepared Compounds
3.4. Lipophilicity HPLC Determination and Calculations
3.5. Biological Assays
3.5.1. Antimycobacterial in Vitro Screening
3.5.2. Antifungal and Antibacterial in Vitro Screenings
3.5.3. Study of Photosynthetic Electron Transport Inhibition
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2013; World Health Organization: Lyon, France, 2013; pp. 1–27. [Google Scholar]
- Zhang, Y.; Chiu Chang, K.; Leung, C.; Yew, W.W.; Gicquel, B.; Fallows, D.; Kaplan, G.; Chaisson, R.E.; Zhang, W. “ZS-MDR-TB” versus “ZR-MDR-TB”: Improving treatment of MDR-TB by identifying pyrazinamide susceptibility. Emerg. Microbes Infect. 2012, 1, e5. [Google Scholar] [CrossRef]
- Velayati, A.A.; Masjedi, M.R.; Farnia, P.; Tabarsi, P.; Ghanavi, J.; Ziazarifi, A.H.; Hoffner, S.E. Emergence of new forms of totally drug-resistant tuberculosis bacilli: Super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 2009, 136, 420–425. [Google Scholar] [CrossRef]
- Lima, C.H.S.; Bispo, M.L.F.; de Souza, M.V.N. Pirazinamida: Um fàrmaco essencial no tratamento da tuberculose. Rev. Virtual Quim. 2011, 3, 159–180. [Google Scholar]
- Zhang, Y.; Wade, M.M.; Scorpio, A. Mode of action of pyrazinamide: Disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother. 2003, 52, 790–795. [Google Scholar] [CrossRef]
- Konno, K.; Feldmann, F.M.; McDermott, W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am. Rev. Respir. Dis. 1967, 95, 461–469. [Google Scholar]
- Zhang, Y.; Scorpio, A.; Nikaido, H.; Sun, Z. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J. Bacteriol. 1999, 181, 2044–2049. [Google Scholar]
- Scorpio, A.; Zhang, Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med. 1996, 2, 662–667. [Google Scholar] [CrossRef]
- Boshoff, H.I.; Mizrahi, V.; Barry, C.E., III. Effects of pyrazinamide on fatty acid synthesis by Whole mycobacterial cells and purified fatty acid synthase I. J. Bacteriol. 2002, 184, 2167–2172. [Google Scholar] [CrossRef]
- Zimhony, O.; Cox, J.S.; Welch, J.T.; Vilcheze, C.; Jacobs, W.R. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FAS-I) of Mycobacterium tuberculosis. Nat. Med. 2000, 6, 1043–1047. [Google Scholar] [CrossRef]
- Zimhony, O.; Vilcheze, C.; Arai, M.; Welch, J.T.; Jacobs, W.R. Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Antimicrob. Agents Chemother. 2007, 51, 752–754. [Google Scholar] [CrossRef]
- Ngo, S.C.; Zimhony, O.; Chung, W.J.; Sayahi, H.; Jacobs, W.R., Jr.; Welch, J.T. Inhibition of isolated mycobacterium tuberculosis fatty acid synthase I by pyrazinamide analogs. Antimicrob. Agents Chemother. 2007, 51, 2430–2435. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, X.; Jiang, X.; Yuan, H.; Lee, J.S.; Barry, C.E.; Wang, H.; Zhang, W.; Zhang, Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 2011, 333, 1630–1632. [Google Scholar] [CrossRef]
- Dolezal, M.; Hartl, J.; Miletin, M.; Machacek, M.; Kralova, K. Synthesis and photosynthesis-inhibiting activity of some anilides of substituted pyrazine-2-carboxylic acids. Chem. Pap. 1999, 53, 126–130. [Google Scholar]
- Dolezal, M. Biologically active pyrazines of natural and synthetic origin. Chem. Listy 2006, 100, 959–966. [Google Scholar]
- Chaluvaraju, K.C.; Ishwar, B.K. Synthesis and antimicrobial activities of amino benzylated mannich bases of pyrazinamide. Int. J. ChemTech Res. 2010, 2, 1368–1371. [Google Scholar]
- Dolezal, M.; Zitko, J.; Osicka, Z.; Kunes, J.; Buchta, V.; Vejsova, M.; Dohnal, J.; Jampilek, J.; Kralova, K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules 2010, 15, 8567–8581. [Google Scholar] [CrossRef]
- Whitehead, R.P.; Unger, J.M.; Flaherty, L.E.; Kraut, E.H.; Mills, G.M.; Klein, C.E.; Chapman, R.A.; Doolittle, G.C.; Hammond, N.; Sondak, V.K. A phase II trial of pyrazine diazohydroxide in patients with disseminated malignant melanoma and no prior chemotherapy—Southwest Oncology Group Study. Invest. New Drugs 2002, 20, 105–111. [Google Scholar]
- Furuta, Y.; Takahashi, K.; Fukuda, Y.; Kuno, M.; Kamiyama, T.; Kozaki, K.; Nomura, N.; Egawa, H.; Minami, S.; Watanabe, Y.; et al. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob. Agents Chemother. 2002, 46, 977–981. [Google Scholar] [CrossRef]
- A-Rahim, Y.I.; Beyer, K.H., Jr.; Vesell, E.S. Studies on pyrazinoylguanidine. 3. Downregulation of lipolysis in isolated adipocytes. Pharmacology 1996, 53, 197–210. [Google Scholar] [CrossRef]
- Dolezal, M.; Kralova, K. Synthesis and evaluation of pyrazine derivatives with herbicidal activity. In Herbicides, Theory and Applications; Soloneski, S., Larramendy, M.L., Eds.; InTech: Vienna, Austria, 2011; pp. 581–610. [Google Scholar]
- Servusova, B.; Eibinova, D.; Dolezal, M.; Kubicek, V.; Paterova, P.; Pesko, M.; Kralova, K. Substituted N-benzylpyrazine-2-carboxamides: Synthesis and biological evaluation. Molecules 2012, 17, 13183–13198. [Google Scholar] [CrossRef]
- Jandourek, O.; Dolezal, M.; Paterova, P.; Kubicek, V.; Pesko, M.; Kunes, J.; Coffey, A.; Guo, J.; Kralova, K. N-Substituted 5-amino-6-methylpyrazine-2,3-dicarbonitriles: Microwave-assisted synthesis and biological properties. Molecules 2014, 19, 651–671. [Google Scholar] [CrossRef]
- Dolezal, M.; Kralova, K.; Sersen, F.; Miletin, M. The site of action of pyrazine-2-carboxylic acids in the photosynthetic apparatus. Folia Pharm. Univ. Carol. 2001, 26, 13–20. [Google Scholar]
- Kralova, K.; Sersen, F.; Miletin, M.; Dolezal, M. Inhibition of photosynthetic electron transport in spinach chloroplasts by 2,6-disubstituted pyridine-4-thiocarboxamides. Chem. Pap. 2002, 56, 214–217. [Google Scholar]
- Kralova, K.; Sersen, F.; Klimesova, V.; Waisser, K. Effect of 2-alkylthio-4-pyridinecarbothioamides on photosynthetic electron transport in spinach chloroplasts. Collect. Czechoslov. Chem. Commun. 1997, 62, 516–520. [Google Scholar] [CrossRef]
- Kralova, K.; Sersen, F.; Kubicova, L.; Waisser, K. Inhibitory effects of substituted benzanilides on photosynthetic electron transport in spinach chloroplasts. Chem. Pap. 1997, 53, 328–331. [Google Scholar]
- Tamai, R.; Ito, M.; Kobayashi, M.; Mitsunari, T.; Nakano, Y. Oxopyrazine Derivative and Herbicide. U.S. Patent Application 2013/0137577, 30 May 2013. [Google Scholar]
- Reingruber, R.; Kraus, H.; Hutzler., J.; Newton, T.W.; Witschel, M.; Moberg, W.K.; Rapado, L.P.; Besong, G; Rack, N.; van der Kloet, A.; et al. Substituted pyrazines having herbicidal activity. U.S. Patent Application 2013/0274109BA1, 17 October 2013. [Google Scholar]
- Nakamura, A.; Ataka, T.; Segawa, H.; Takeuchi, Y.; Takematsu, T. Studies on herbicidal 2,3-dicyanopyrazines. 2. Structure-activity relationships of herbicidal 5-ethylamino- and 5-propylamino-2,3-dicyanopyrazines. Agric. Biol. Chem. 1983, 47, 1561–1567. [Google Scholar] [CrossRef]
- Hayes, B.L. Microwave Synthesis: Chemistry at the Speed of Light; CEM Pub.: Matthews, NC, USA, 2002. [Google Scholar]
- De La Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 2005, 34, 164–178. [Google Scholar] [CrossRef]
- Albert, A.; Brown, D.J.; Wood, H.C.S. 406. Pteridine studies. Part VIII. The degradation of pteridine. Methylation of the hydroxypteridines and degradation of the products. J. Chem. Soc. 1956. [Google Scholar] [CrossRef]
- Dlabal, K.; Palat, K.; Lycka, A.; Odlerova, Z. Synthesis and 1H- and 13C-NMR spectra of sulfur derivatives of pyrazine derived from amidation product of 2-chloropyrazine and 6-chloro-2-pyrazinecarbonitrile. Tuberculostatic activity. Collect. Czechoslov. Chem. Commun. 1990, 55, 2493–2500. [Google Scholar] [CrossRef]
- Osdene, T.S.; Taylor, E.C. A new synthetic approach to pteridines*. J. Am. Chem. Soc. 1956, 78, 5451–5452. [Google Scholar] [CrossRef]
- Keir, W.F.; MacLennan, A.H.; Wood, H.C. Amidinoacetamides in the synthesis of pyrazines and pteridines. J. Chem. Soc. 1977, 11, 1321–1325. [Google Scholar]
- Izawa, S. Acceptors and donors for chloroplast electron transport. In Methods in Enzymology; Part, C., Colowick, P., Kaplan, N.O., Eds.; Academic Press: New York, NY, USA; London, UK, 1980; Volume 69, pp. 413–434. [Google Scholar]
- Kralova, K.; Sersen, F.; Pesko, M.; Klimesova, V.; Waisser, K. Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts. Chem. Pap. 2012, 66, 795–799. [Google Scholar] [CrossRef]
- Gonec, T.; Kos, J.; Zadrazilova, I.; Pesko, M.; Keltosova, S.; Tengler, J.; Bobal, P.; Kollar, P.; Cizek, A.; Kralova, K.; et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013, 21, 6531–6541. [Google Scholar]
- Kralova, K.; Sersen, F.; Pesko, M.; Waisser, K.; Kubicova, L. 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides - inhibitors of photosynthesis. Chem. Pap. 2014, 68, 46–52. [Google Scholar] [CrossRef]
- Gonec, T.; Kos, J.; Zadrazilova, I.; Pesko, M.; Govender, R.; Keltosova, S.; Chambel, B.; Pereira, D.; Kollar, P.; Imramovsky, A.; et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules 2013, 18, 9397–9419. [Google Scholar] [CrossRef]
- Jampilek, J.; Dolezal, M.; Kunes, J.; Satinsky, D.; Raich, I. Novel regioselective preparation of 5-chloropyrazine-2-carbonitrile, pyrazine-2-carboxamide and coupling study of substituted phenylsulfanylpyrazine-2-carboxylic acid derivatives. Curr. Org. Chem. 2005, 9, 49–60. [Google Scholar]
- Jones, R.N.; Barry, A.L. Optimal dilution susceptibility testing conditions, recommendations for MIC interpretation, and quality control guidelines for the ampicillin-sulbactam combination. J. Clin. Microbiol. 1987, 25, 1920–1925. [Google Scholar]
- National Committee for Clinical Laboratory Standards. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Proposed Standard M 27-P; National Committee for Clinical Laboratory Standards: Villanova, PA, USA, 1992. [Google Scholar]
- Kralova, K.; Sersen, F.; Sidoova, E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992, 46, 348–350. [Google Scholar]
- Masarovicova, E.; Kralova, K. Approaches to measuring plant photosynthesis activity. In Handbook of Photosynthesis, 2nd ed.; Pessarakli, M., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2005; pp. 617–656. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jandourek, O.; Dolezal, M.; Kunes, J.; Kubicek, V.; Paterova, P.; Pesko, M.; Buchta, V.; Kralova, K.; Zitko, J. New Potentially Active Pyrazinamide Derivatives Synthesized Under Microwave Conditions. Molecules 2014, 19, 9318-9338. https://doi.org/10.3390/molecules19079318
Jandourek O, Dolezal M, Kunes J, Kubicek V, Paterova P, Pesko M, Buchta V, Kralova K, Zitko J. New Potentially Active Pyrazinamide Derivatives Synthesized Under Microwave Conditions. Molecules. 2014; 19(7):9318-9338. https://doi.org/10.3390/molecules19079318
Chicago/Turabian StyleJandourek, Ondrej, Martin Dolezal, Jiri Kunes, Vladimir Kubicek, Pavla Paterova, Matus Pesko, Vladimir Buchta, Katarina Kralova, and Jan Zitko. 2014. "New Potentially Active Pyrazinamide Derivatives Synthesized Under Microwave Conditions" Molecules 19, no. 7: 9318-9338. https://doi.org/10.3390/molecules19079318
APA StyleJandourek, O., Dolezal, M., Kunes, J., Kubicek, V., Paterova, P., Pesko, M., Buchta, V., Kralova, K., & Zitko, J. (2014). New Potentially Active Pyrazinamide Derivatives Synthesized Under Microwave Conditions. Molecules, 19(7), 9318-9338. https://doi.org/10.3390/molecules19079318